
 
 

Abstract— DEVS is a sound formal modeling and simulation (M&S) framework based on 
generic dynamic system concepts. Cell-DEVS is a formalism for cell-shaped models based 
on DEVS. This work presents a new simulation technique for execution of DEVS and Cell-
DEVS models in parallel environments. These techniques are modifications to the original 
Time Warp mechanism offered by WARPED kernel. Time Warp functionalities are 
revised to include two new algorithms namely, Local Rollback Frequency Model (LRFM) 
and Global Rollback Frequency Model (GRFM). The resultant simulator is used as new 
simulation engine for CD++, a M&S toolkit that implements DEVS and Cell-DEVS 
theories. The results obtained allowed us to achieve considerable speedups due to the 
reductions that LRFM and GRFM protocols perform on number of rollbacks and anti-
messages. 

 
Index Terms— Cellular Automata, Parallel Simulator, Cell-DEVS, Optimistic Simulator. 

I. INTRODUCTION 
ODELING and simulation (M&S) methodologies have become crucial for implementing, 
designing, and analyzing a broad verity of systems. Among the existing simulation techniques, 
DEVS (Discrete Event System Specification) formalism [Zei00] provides a discrete-event M&S 
approach which allows construction of hierarchical models in a modular manner. DEVS is a 
sound formal framework based on generic dynamic systems concepts that allows model reuse, 
and reduction in development and testing time due to its hierarchical approach in constructing 
models. Cell-DEVS [Wai01] is an extension to DEVS which integrates DEVS and cellular 
automata by presenting each cell as an atomic DEVS model. Cell-DEVS introduced a novel 
mechanism for computation based on asynchronous cellular models with explicit timing 
constructions. The technique has been used to develop a wide variety of models in different 
field, ranging from environmental sciences, traffic, biology and physics.  

When large complex models are defined, the computing power of a single computer degrades. 
In these cases, a parallel simulator can improve execution times. Here, we present new 
techniques for executing DEVS and Cell-DEVS models in parallel and distributed environments 
based on the WARPED kernel [Mar99], an implementation of the Time Warp protocol [Jef85]. 
Our optimistic simulator, called as PCD++, is built as a new simulation engine for CD++ 
[Wai02], a M&S toolkit that implements the DEVS and Cell-DEVS formalisms. Algorithms in 
CD++ and the WARPED kernel are redesigned based on Near Perfect State Information technique 
to carry out optimistic simulations using a non-hierarchical approach that reduces the 
communication overhead. Two new algorithms namely, Local Rollback Frequency Model 
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(LRFM) and Global Rollback Frequency Model (GRFM) have been implemented and used by 
our PCD++ simulator. These two algorithms have been tested using different Cell-DEVS 
models. Here we present an evacuation model of a ship and a model of the Synapsin-Vesicle 
reaction in neurons.  

II. BACKGROUND 
DEVS [Zei00] is a formalism for modeling and simulation of DEDS (Discrete Events Dynamic 
Systems) which provides a framework for the definition of hierarchical models in a modular way 
by decomposing the real system into behavioral (atomic) and structural (coupled) components. 
DEVS theory provides a rigorous methodology for representing models, and it does present an 
abstract way of thinking about the world with independence of the simulation mechanisms, 
underlying hardware and middleware. A DEVS atomic model is formally defined by: 

M = <X, Y, S, δint, δext, λ, ta>, 
where 
X = {(p,v) | p ∈ IPorts, v ∈ Xp} 
                                              is the set of input ports and values; 
Y = {(p,v) | p ∈ OPorts, v ∈ Yp} 
                                          is the set of output ports and values; 
S                                      is the set of sequential states; 
δint: S → S                          is the internal state transition function; 
δext: Q × X →S                  is the external state transition function, where 
Q = {(s,e) | s ∈ S, 0 < ∈ < ta(s)}     is the total state set, e is the time elapsed since the last state transition; 
λ: S →Y                            is the output function; 

ta: S → R+
0,∞                       is the time advance function. 

  
The semantics for this definition is given as follows. At any time, a DEVS coupled model is in a 
state s ∈ S. In the absence of external events, the model will stay in this state for the duration 
specified by ta(s). When the elapsed time e = ta(s), the state duration expires and the atomic 
model will send the output λ(s) and performs an internal transition to a new state specified by 
δint(s). Transitions that occur due to the expiration of ta(s) are called internal transitions. 
However, state transition can also happen due to arrival of an external event which will place the 
model into a new state specified by δext(s,e,x); where s is the current state, e is the elapsed time, 
and x is the input value. The time advance function ta(s) can take any real value from 0 to ∞. A 
state with ta(s) value of zero is called transient state, and on the other hand, if ta(s) is equal to ∞ 
the state is said to be passive, in which the system will remain in this state until receiving and 
external event.  

A DEVS coupled model is composed of several atomic or coupled submodels, which is 
formally defined by:   

CM = <X, Y, D, {Md | d∈D}, EIC, EOC, IC, Select>, 
where 
X = {(p,v) | p ∈ IPorts, v ∈ Xp}      is the set of input ports and values; 
Y = {(p,v) | p ∈ OPorts, v ∈ Yp} is the set of output ports and values; 
D is the set of the component names, and the following requirements are imposed on the components, which 
must also be DEVS models: 
For each d ∈ D, Md = (Xd, Yd, Sd, δint, δext, λ, ta) is a DEVS with 
Xd = {(p,v) | p ∈IPortsd, v∈Xp}, 



 
 

        and Yd = {(p,v) | p ∈ OPortsd, v∈ Yp}. 
The component couplings are subject to the following requirements: 
 
External input coupling (EIC) connects external inputs to component inputs,  
EIC⊆ {((N, ipN), (d, ipd)) | ipNe IPorts, d∈D, ipd∈IPortsd}; 
External output coupling (EOC) connects component outputs to external outputs, 
EOC⊆ {((d, opd), (N, opN)) | opN∈ OPorts, d∈D, opd∈OPortsd}; 
Internal coupling (IC) connects component outputs to component inputs,  
IC⊆{((a, opa), (b, ipb)) | a, b∈D,opa∈OPortsa, ipb∈IPortsb}; 
Select: 2D - {} → D is the tie-breaking function for imminent components. 

Due to the closure property, a coupled model is regarded as a new DEVS model [Zei00]. 
This property clarifies that the overall behavior of a coupled model is equivalent to a basic 
atomic model, and therefore allows hierarchical model construction.  

Cell-DEVS [Wai01] is an extension to DEVS which integrates DEVS and cellular automata 
by presenting each cell as an atomic DEVS model. Two types of timing delays can be used, 
namely transport and inertial [Wai00]. When transport delay is used, the future value is added to 
queue sorted by output time, allowing the previous values that were scheduled for output but 
have not yet been sent to be kept. On the other hand, inertial delays allow a preemptive policy at 
which any previous scheduled output value will be deleted and the new value will be scheduled. 
Cell-DEVS formalism is defined by: 

TDC = < X, Y, I, S, θ, N, d, δint, δext, τ, λ, D > 
where 
              X     is a set of external input events; 
              Y    is a set of external output events; 
 

I        represents the model's modular interface; 
S     is the set of sequential states for the cell; 
θ    is the cell state definition; 
N     is the set of states for the input events; 
d     is the delay for the cell; 
δint     is the internal transition function; 
δext    is the external transition function; 
τ     is the local computation function; 
λ     is the output function; and 
D     is the state's duration function. 

By integrating atomic Cell-DEVS, coupled models can be constructed representing the cell 
space. A coupled Cell-DEVS model is formally defined as follows: 

GCC = < Xlist, Ylist, I, X, Y, n, {t1,...,tn}, N, C, B, Z, select > 
where 

Xlist   is the input coupling list; 
Ylist    is the output coupling list; 
I  represents the definition of the model’s interface;  

              X    is the set of external input events; 
Y    is the set of external output events; 
n    is the dimension of the cell space; 
{t1,...,tn} is the number of cells in each of the dimensions; 
N     is the neighborhood set; 
C     is the cell space; 



 
 

B     is the set of border cells; 
Z    is the translation function; and 

select  is the tie-breaking function for simultaneous events. 
 The above formalism explains that a coupled model is composed of an array of atomic cells 

with given size and dimensions where each cell is connected through standard DEVS 
input/output ports to the cells defined in the neighborhood.  Since the cell space is finite, the 
borders of the cells are either connected to a different neighborhood than the rest of the space, or 
they are “wrapped” in which they are connected to those in the opposite one using the inverse 
neighborhood relationship. However, border cells have a different behavior due to their 
particular locations, which result in a non-uniform neighborhood. A Cell-DEVS coupled model 
is informally presented in Figure 1. 

 
Figure 1. Description of a Cell-DEVS atomic model[Wai00] 

 
CD++ [Wai02] is a modeling tool that implements the DEVS and Cell-DEVS theories by 
applying the original formalisms. The toolkit includes facilities to build DEVS and Cell-DEVS 
models. CD++ toolkit also includes an interpreter for Cell-DEVS models [Wai00]. The language 
is based on the formal specifications of Cell-DEVS. The model specification includes the 
definition of the size and dimension of the cell space, the shape of the neighborhood and the type 
of cell’s bordering. The cell’s local computing function is defined using a set of rules with the 
form        POSTCONDITION          DELAY 
{ PRECONDITION }. These indicate that when the PRECONDITION is met, the state of the cell 
will change to the designated POSTCONDITION after the duration specified by DELAY. If the 
precondition is not met, then the next rule is evaluated until a rule is satisfied or there are no 
more rules. The next section will present two Cell-DEVS models generated with CD++ toolkit. 

In parallel and distributed environments the entire task of simulation is divided among the 
processors or nodes (Logical Process (LP)) and therefore each one of them handles a smaller 
chunk of the simulation while the whole process of execution takes place in parallel and as a 
result in a significantly reduced time. In sequential simulations, events are executed base on 
timestamp order, therefore the correctness of the result is automatically guaranteed. In contrast, 
parallel and distributed simulations require a mechanism to ensure that the result of concurrent 
execution is identical to that of sequential one. To obtain this correctness, Local Causality 
Constraint [Fuj00] must be satisfied. This requirement is said to be met if and only if each 
process executes events in non-decreasing timestamp order. Therefore, synchronization among 
LPs is the most challenging problem of parallel and distributed simulation. There exist three 
different types of synchronization strategies for event driven simulations: 

1. No synchronization at all: synchronization is ensured by the application. 
2. Pessimistic (conservative) synchronization [Bry77]: causality violations are strictly 

avoided. 
3. Optimistic synchronization [Jef85]: causality errors are fixed by the notion of rollbacks. 

 



 
 

Conservative parallel discrete event simulation: This synchronization approach disallows 
any occurrence of causality errors. The essential for this technique is the lookahead which 
provides the smallest time stamp of the new events that a process can schedule in the future. Null 
messages are responsible to carry out the lookahead information among LPs. This way each LP, 
based on the lookahead information that it receives from all other LPs can derive a lower bound 
on the time stamp (LBTS) of the events that it will receive in future. As a result, the LP would 
know which event is safe to process. The biggest drawback of the conservative synchronization 
approach is the time wasting flow of null messages which degrade the simulation performance 
significantly. Having the fact that optimistic approaches lack in terms of causality errors 
avoidance, however, they offer two important advantages over conservative techniques: 

1. Optimistic approaches have a higher degree of parallelism unlike the conservative 
approaches where they are overly pessimistic and force the simulation to behave 
sequentially when in is not necessary. 

2. Conservative approaches rely very much on application-specific information when 
making run-time decisions on whether it is safe to process the event or not. But 
optimistic mechanism are less reliant on the application for correct execution, therefore 
allow a simplified software development and more transparent synchronization. 

 
Optimistic parallel discrete event simulation: In this technique which was first proposed 

by Jefferson’s Time Warp mechanism [Jef85], each LP has a Local Virtual Time (LVT) which 
advances every discrete step as events are executed on the process. Therefore, time warp 
processes execute their own portion of the simulation based on LP’s LVT. Since every LP has its 
own LVT, causality errors occur when LPs send messages to each other. This way, an LP may 
receive a message with time stamp smaller than its current LVT. Such events are referred to as 
straggler events. Once a straggler event is received the process will rollback. Rollback is the 
operation performed upon reception of a straggler event, where the process recovers from the 
causality error by undoing the effects of all the events that were processed and had timestamp 
greater than the time stamp of the straggler event. Therefore, these messages were falsely sent to 
other processes and now must be canceled. This cancellation is performed by sending anti-
messages. The anti-message has exactly the same format as the original message (the positive 
message) except for a negative flag to indicate it is an anti-message.  

Our PCD++ optimistic simulator implements the Parallel DEVS and Cell-DEVS formalisms 
and provides the frame work for building and executing DEVS and Cell-DEVS models in 
distributed environments using the Time Warp protocol. PCD++ implements a flattened structure 
for the simulation framework. Two types of CD++ processors exist on PCD++: Flat Coordinator 
(FC) and Node Coordinator (NC). This approach reduces the communication overhead by 
flattening the structure of the simulation framework. 

III. SHIP EVACUATION MODEL 
The first Cell-DEVS model we represent here is the illustration of an emergency ship evacuation 
scenario [Klu01]. The model consists of 20×20 cell space in CD++.  The rules defining the 
model are based on the following restrictions: 

1. Each cell representing a person on the ship, calculates its shortest path toward the exit.  
During initialization phase, people are placed randomly in any empty cell to imitate real 
ship evacuation scenario. 

2. People run in their initial direction until they encounter another person or an obstacle 
(e.g. wall).   

At the end of simulation, there should be no one left on the ship, i.e. all people must have been 
left through the exit doors. 



 
 

UU (-2,0)

U (-1,0)

(0,0)

D (1,0)

UL (-1, -1)

L (0, -1)

DL (1, -1) DR (1, 1)

R (0, 1) RR (0, 2)

UR (-1, 1)

The neighborhood of each cell consists of 10 cells which will affect the cell’s movement (i.e. 
they can be walls, exit doors, people, or empty cells) as shown in  
 
Figure 2.  
 
 
 
 
 
 

 
 

Figure 2. Cell neighborhood 
From the above figure we can see that the neighborhood consists of 11 cells: {(-2,0), (-1,-1), (-
1,0), (-1,1), (0,-1), (0,0), (0, 1), (0, 2), (1, -1), (1,0), (1, 1)} where UU is the upper’s upper cell, 
UL is the upper’s left cell, U is the upper cell, UR is the upper’s right cell, L is the left cell, R is 
the right cell, RR is the right’s right cell, DL is the down’s left cell, D is the down cell and DR is 
the down’s right cell. Each value on the cell space defines a distinct state, such as the type of the 
cell: wall, empty, exit door, a moving person. Also each type of movement is given a state value 
in order to identify the next position of the person. Table 1 summarizes these values. 
 

Name Value Comments 
N/A 0 Unknown Empty cell. 
Wall 1 Represents an obstacle or a wall. 
Exit 2 Represents an exit (e.g. stairs, door). 
ED 3 Empty cell and its down (D) cell is the 

shortest path to the nearest exit. 
ER 5 Empty cell and its right (R) cell is the 

shortest path to the nearest exit. 
EU 7 Empty cell and its up (U) cell is the 

shortest path to the nearest exit. 
EL 9 Empty cell and its left (L) cell is the 

shortest path to the nearest exit. 
FD 4 A Full cell (cell with person) and its 

down (D) cell is the shortest path to the 
nearest exit. 

FR 6 A Full cell (cell with person) and its 
right (R) cell is the shortest path to the 
nearest exit. 

FU 8 A Full cell (cell with person) and its up 
(U) cell is the shortest path to the nearest 
exit. 

FL 10 A Full cell (cell with person) and its left 
(L) cell is the shortest path to the nearest 
exit. 

Table 1. State values and their description 
 

Based on these values, we define different rules for the movement of people in the vessel. The 
first four rules initialize the model by calculating the shortest path for each undefined cell and 
placing people on the cell space randomly. 
 



 
 

Result Precondition  
3 or 4 (ED or FD)  (0,0) = Undefined and (1,0) is defined. 
5 or 6 (ER or FR) (0,0) = Undefined and (0,1) is defined. 
7 or 8 (EU or FU) (0,0) = Undefined and (-1,0) is defined. 
9 or 10 (EL or FL) (0,0) = Undefined and (0, -1) is 

defined. 
 

The algorithm works as follows: when a cell detects that one of its attached cells has changed its 
state to “defined”, it would know that the attached cell is the shortest path. The above four rules 
are implemented as the following: 
 
rule: {3+randInt(1)} 0 {(0,0)=0 and (1,0)>1 and (1,0)<11} 
rule: {5+randInt(1)} 0 {(0,0)=0 and (0,1)>1 and (0,1)<11} 
rule: {7+randInt(1)} 0 {(0,0)=0 and (-1,0)>1 and 
(-1,0)<11}  
rule: {9+randInt(1)} 0 {(0,0)=0 and (0,-1)>1 and    (0,-1)<11} 
 

Then the second four rules define the case when a cell knows that a person will move 
towards it. The cell knows it will soon be occupied by a person if it is empty and it is the shortest 
path to at least one cell with a person occupying it. 
 

Result Precondition 
 4  
→ FD state 

(0,0) = ED and ((0,1) = FL or (-1,0) = FD 
or (0,-1) = FR ) 

6 
→ FR state 

(0,0) = ER and ((1,0) = FU or (-1,0) = FD 
or (0,-1) = FR) 

8 
→ FU state 

(0,0) = EU and ( (1,0) = FU or (0,1) = FL 
or (0,-1) = FR ) 

10 
→ FL state 

(0,0) = EL and ( (1,0) = FU or (0,1) = FL 
or (-1,0) = FD ) 

 
The third four rules define when a cell occupied with a person is attached to the exit.  Then, 

the cell knows that a person will leave it and exit. 
Result Precondition 

 3→ ED state (0,0) = FD and (1,0) is exit 
5→ ER state (0,0) = FR and (0,1) is exit 
7→ EU state (0,0) = FU and (-1,0) is exit 
9→ EL state (0,0) = FL and (0,-1) is exit 

 
Then the fourth four rules define when a cell knows that a person will leave it when it is not 

near an exit.  The cell knows that a person will leave it when it is already occupied by a person 
and its shortest path cell is empty.  However, only one person can move to the empty cell when 
more than one person is trying to move to the same cell.  In this case, the priority is first with the 
person who is in the upper cell, second the one in the right cell, third the one in the down cell, 
and finally the one in the left cell has the lowest priority. 
 

Result Precondition 
 3→ ED state (0,0) = FD and down (D) cell is empty. 
5→ ER state (0,0) = FR and right cell (R) is empty and 

UR,RR, and DR cells don’t have a person 
moving to R. 

7→ EU state (0,0) = FU and upper cell (U) is empty and 
UU and UR cells don’t have a person moving 



 
 

Result Precondition 
to U. 

9→ EL state (0,0) = FL and left cell (L) is empty and UL 
doesn’t have a person moving to L. 

Finally if none of the rules are evaluated, the following rule which serves as a default case, 
will evaluate. A cell executing this line will remain unchanged and stay as before. 

 
rule : {(0,0)} 100 { t } 

 
Figure 3 shows an extract of the model’s definition in CD++. 
 
[top] 
components : ship 
 
[ship] 
type : cell dim : (20,20) delay : transport 
defaultDelayTime : 20 border : nowrapped 
 
neighbors : (-2,0) (-1,-1) (-1,0) (-1,1) (0,-1) 
neighbors : (0,0) (0,1) (0,2) (1,-1) (1,0) (1,1) 
… 
localtransition : ship-rule 
[ship-rule] 
rule : {3 + randInt(1)} 0 {(0,0)=0 and (1,0)>1 and (1,0)<11} 
… 
rule : 4  100 {(0,0)=3 and ((0,1)=10or(-1,0)=4 or (0,-1)=6)} 
… 
rule : 3 100 { (0,0) = 4 and (1,0) = 2} 
… 
rule : 3  100 { (0,0) = 4 and odd((1,0)) } 
… 
rule : {(0,0)} 100 { t } 

 
Figure 3. Definition of ship evacuation model in CD++ 

 
The ship evacuation model can be modified by adding more exit doors or changing the 

position of these cells. As presented in Figure 4 initially four different types of cells appear on 
the grid: empty spaces, walls, people, and exit doors, while the final result of the simulation 
shows no presence of people, i.e. the ship is evacuated. 

 

 
 



 
 

 
Figure 4. Model Execution Results; initial values; final execution 

IV. SYNAPSIN-VESICLE REACTION MODEL 
The second model we built was the reserve pool of synaptic vesicles in a presynaptic nerve 

terminal, predicting the number of synaptic vesicles released from the reserve pool as a function 
of time under the influence of action potentials at differing frequencies. Time series 
amounts for the components are obtained using rule-based methods (the rules defined by Cell-
DEVS) [Ala07]. 

Synapsin is a neuron-specific phosphoprotein that binds to small synaptic vesicles and actin 
filaments in a phosphorylation-dependent pattern. Microscopic models have demonstrated that 
synapsin inhibits neurotransmitter release either by forming a cage around synaptic vesicles 
(cage model) or by anchoring them to the F-actin cytoskeleton of the nerve terminal [Ben90]. 

We modeled the molecular interaction of synapsin (S) with vesicles (V) which occur inside a 
nerve cell. The model describes the behavior of synapsin movements until reaching a vesicle and 
binding to it. Once binding has occurred, depending on offrate V and S can again go apart and 
break their bindings. The onrate and offrate describe how often bindings occur or break then 
after. The following formula describes the nature of the reaction: 

S + V ↔ SV 
From the above formula, the left hand side of the equation demonstrates the binding scenario 

where synapsin and vesicles perform a bind at a rate specified by onrate, while the right hand 
side of the equation illustrates the  bind-break scenario where an synapsin-vesicle at an offrate 
which is always smaller than onrate breaks apart and again synapsin and vesicles get released. 
Then, synapsin and vesicles can again perform binding and break apart then after. This equation 
shows an on-going process of “binding” and “breaking apart” which depends on offrate/onrate. 
The larger the offrate is, the more bindings get broken apart. Similarly, the larger the onrate is, 
the more V-S binds are produced. Three different scenarios are modeled: 1) V is stationary (with 
a fixed position on cell space), and S is mobile, 2) V is mobile and S is stationary, and 3) V and 
S are both mobile (leads to maximum number of total movements and therefore bindings). 

The coupled Cell-DEVS model for this application is described as follows. 
       M=<I,X,Y,Xlist,Ylist,η, N,{m,n}, C, B, Z, select> 
Xlist=Φ Ylist=Φ η=9 I=<PX,Py>,with PX={Φ},Py={Φ}; 
N={ (-1,-1), (-1,0), (-1,1), (0,-1), (0,0), (0,1), (1,-1)(1,0) (1,1)}; 
X={0,1,2,11,12,13,14,21,22,23,24,31,32,33,34,41,42,43,44}; 
Y={0,1,2,11,12,13,14,21,22,23,24,31,32,33,34,41,42,43,44}; 
m=26; n=22; B={Φ}; C={Cij/iε[1,26], jε[1,22]} 
select ={  (-1,-1), (-1,0), (-1,1), (0,-1), (0,0), (0,1), (1,-1), (1,0), (1,1) }; 

Z:  
Pij Y1 → Pi,j-1 X1         Pi,j+1 Y1 →  Pij X1 



 
 

Pij Y2 → Pi+1,j X2                  
Pij Y3 → Pi,j+1 X3        
Pij Y4 → Pi-1,j X4         
Pij Y5 → Pij X5 

Pi-1,j Y2 →   Pij X2 
Pi,j-1 Y3  →  Pij X3 
Pi+1,j Y4 →  Pij X4 
Pij Y5 →  Pij X5 

 
The cell space, the value 1 was used to represent V, and the value 2 was used to represent S. 

The number 0 represents an empty cell for which a mobile S can occupy. To give direction to the 
V (although the model assumes fixed V) or S, a two digit number was used. For example, the 
following represent: 

 
11    “up” moving V 
12    “right” moving V 
13    “down” moving V 
14    “left” moving V 

21  “up” moving S 
22  “right” moving S 
23  “down” moving S 
24  “left” moving S 

 
As we can see, Cell-DEVS provides great support for defining these models, for having 

independent cell states and random mobility of cells, provide an excellent environment to 
simulate the process of synapsin-vesicles interactions of a nerve. As mentioned earlier, the 
model constructed can be further extended to include the movement of both synapsin (S) and 
vesicles (V) as well as defining different off and on rates. Aside from V-S reactions, the model 
can also include Actins, which bind to synapsins. Actins can be represented as a string of cells 
being fixed at their cell space position. A summarized version of the model’s definition in 
CD++ is as follows: 

 
[top] 
components : chemCell 
 
[chemCell] 
type : cell dim : (26,22)  delay : transport 
defaultDelayTime : 100    border : wrapped  
neighbors : (-1,-1) (-1,0) (-1,1) (0,-1) (0,0) (0,1)  
neighbors :  (1,-1)  (1,0)  (1,1) 
localtransition : chemCell-rule 
 
[chemCell-rule] 
rule : {round(uniform(11,14))} 100 { (0,0) = 1  } 
… 
rule : {round(uniform(31,34))} 100 {((0,0)=21 or (0,0)=22 or (0,0)=23 or 
(0,0)=24) and(((-1,0)-10=1 or (-1,0)-10=2 or…} 
… 
%moving up 
rule : 91 100 {(0,0)=21 and (-1,0)=0 and t} 
rule : {round(uniform(21,24))} 0 {(0,0)=0 and (1,0)=91 } 
… 
%release 0.1 of the S (the offrate is 0.1) 
rule : {round(uniform(21,24))} 100 {((0,0)=33 or (0,0)=32 or 
(0,0)=31 or (0,0)=34) and random < 0.10} 
… 
rule : { (0, 0) } 100 { t} 

Figure 5. Synapsin-Vesicle Reaction model in CD++ 
 
 In the following code, we explain in details each part of the model definition. 
 

initialrowvalue : 0       0010201202201012020100  



 
 

initialrowvalue : 1       0001020120101020120100  
initialrowvalue : 2       0000000000000000000000 
initialrowvalue : 3       0010112010120220220100  
initialrowvalue : 4       0002010001120220111200  

... 
initialrowvalue : 25      0001202020111202201000 

 
...          

rule : {round(uniform(11,14))} 100 { (0,0) = 1  } 
rule : {round(uniform(21,24))} 100 { (0,0) = 2  } 

 

In the above two rules, the cells are first initialized with 11-14 (for Vesicles) and 21-24 (for 
Synapsin) to show the scenario at time = 0, where bindings have not yet been performed. Once 
bindings occur, cells change their values; 11-14 get replaced with 31-34, and 21-24 get replaced 
with 41-44. Also for Synapsins, four intermediate values 91-94 are used to represent a moving 
cell that has not yet being settled down. Once it settles down its value changes back to 21-24 
(depending on its direction of movement) and gets ready to bind to a vesicle in its neighborhood.  

 
rule : {round(uniform(31,34))} 100 {((0,0)=21 or (0,0)=22 or (0,0)=23 or 
(0,0)=24) and  
( ((-1,0)- 10 = 1 or (-1,0)- 10 = 2 or (-1,0)- 10 = 3 or (-1,0)- 10 =4 ) or 
  ((1,0)- 10 = 1 or (1,0)- 10 = 2 or (1,0)- 10 = 3 or (1,0)- 10 = 4)     or 
  ((0,-1)- 10 = 1 or (0,-1)- 10 = 2 or (0,-1)- 10 = 3 or (0,-1)- 10 = 4) or 
  ((0,1)- 10 = 1 or (0,1)- 10 = 2 or (0,1)- 10 = 3 or (0,1)- 10 = 4 )    or 
  ((-1,1)- 10 = 1 or (-1,1)- 10 = 2 or (-1,1)- 10 = 3 or (-1,1)- 10 = 4) or 
  ((1,-1)- 10 = 1 or (1,-1)- 10 = 2 or (1,-1)- 10 = 3 or (1,-1)- 10 = 4) or 
  ((1,1)- 10 = 1 or (1,1)- 10 = 2 or (1,1)- 10 = 3 or (1,1)- 10 = 4)     or 
  ((-1,-1)- 10 = 1 or (-1,-1)- 10 = 2 or (-1,-1)- 10 = 3 or (-1,-1)- 10 = 4)) 
and random > 0.10} 

 

The above rule describes the following scenario: if there exists a synapsin having the value 
21, 22, 23, or 24 (a synapsing that can move up/right/down/left) and there is a vesicle in its 
neighboring which could be an adjacent cell or a diagonal cell, then the synapsin (red cells) will 
move toward this vesicle and a binding will occur soon, the value of the synapsin gets changed 
to 31, 32, 33, or 34 (i.e. 21 changes to 31, 22 changes to 32, 23 changes to 33, and 24 changes to 
34) to represent a synapsin that is bonded to a vesicle. 

 
rule : {round(uniform(41,44))} 100 {((0,0)=11 or (0,0)=12 or (0,0)=13 or 
(0,0)=14) and 
( ((-1,0)- 30 = 1 or (-1,0)- 30 = 2 or (-1,0)- 30 = 3 or (-1,0)- 30 = 4) or 
((1,0)- 30 = 1 or (1,0)- 30 = 2 or (1,0)- 30 = 3 or (1,0)- 30 = 4) or 
((0,-1)- 30 = 1 or (0,-1)- 30 = 2 or (0,-1)- 30 = 3 or (0,-1)- 30 = 4)  or 
((0,1)- 30 = 1 or (0,1)- 30 = 2 or (0,1)- 30 = 3 or (0,1)- 30 = 4 ) or 
((-1,1)- 30 = 1 or (-1,1)- 30 = 2 or (-1,1)- 30 = 3 or (-1,1)- 30 = 4) or 
((1,-1)- 30 = 1 or (1,-1)- 30 = 2 or (1,-1)- 30 = 3 or (1,-1)- 30 = 4) or 
((1,1)- 30 = 1 or (1,1)- 30 = 2 or (1,1)- 30 = 3 or (1,1)- 30 = 4) or 
((-1,-1)- 30 = 1 or (-1,-1)- 30 = 2 or (-1,-1)- 30 = 3 or (-1,-1)- 30 = 4))  
and random > 0.10} 

 

Similarly, the above rule describes the following: if there exists a vesicle having the value 
11, 12, 13, or 14 (a vesicle that can move up/right/down/left) and there is a synapsin in its 
neighboring which could be an adjacent cell or a diagonal cell, then since the synapsin will come 
toward this vesicle and a binding will occur soon, the value of the vesicle gets changed to 41, 42, 
43, or 44 (i.e. 11 changes to 41, 12 changes to 42, 13 changes to 43, and 14 changes to 44). 



 
 

For the movement of synapsin the following four rules are implemented: (each movement is 
performed in three steps) 

 
%moving up 
rule : 91 100 {(0,0)=21 and (-1,0)=0 and t} 
rule : {round(uniform(21,24))} 0 {(0,0)=0 and (1,0)=91 } 
rule : 00 0 {(0,0)=91} 
 
step 1: checking to see if there is an empty cell so the synapsin can move into it, for example if 
the synapsin’s direction is upward (value = 21), then at first we need to check if there is an 
empty cell right above it. (91 is used as an intermediate value to occupy the empty cell) 
step 2: once an empty cell is found, it gets occupied by the synapsin (i.e. the cell’s value changes 
from 0 to a random number 21-24). 
step 3: the previous position of the synapsin that just moved to an empty cell gets cleared by 
setting the value of the cell to 0. 
 
 Same procedure is used for right, left, and down movement. 

 
%moving right 
rule : 92 100 {(0,0)=22 and (0,1)=00 and t} 
rule : {round(uniform(21,24))} 0 {(0,0)=0 and (0,-1)=92} 
rule : 00 0 {(0,0)=92} 

 
%moving down 
rule : 93 100 {(0,0)=23 and (1,0)=00 and t} 
rule : {round(uniform(21,24))} 0 {(0,0)=0 and (-1,0)=93 } 
rule : 00 0 {(0,0)=93} 

 
%moving left 
rule : 94 100 {(0,0)=24 and (0,-1)=00 and t} 
rule : {round(uniform(21,24))} 0 {(0,0)=0 and (0,1)=94 } 
rule : 00 0 {(0,0)=94} 

 
%release 0.1 of the S (the offrate is 0.1) 
rule : {round(uniform(21,24))} 100 {((0,0)=33 or (0,0)=32 or (0,0)=31 or 
(0,0)=34) and random < 0.10} 

 

The above rule is used to break the S-V bindings using an offrate = 0.10. According to this 
rule, 10% of the bindings get broken and as a result synapsins get released and will be given 
another direction and they will move around until finding a vesicle and binding to it. 

Figure 6 shows the grid at the initial case where S and V have not yet interacted to perform a 
bound. Then, Figure 7 will show how bounds are formed and the corresponding cells change 
their values to represent the binding.  

 
 
       0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20  21  
    +----------------------------------------------------------------------------------------+ 
   0|          13      24      14  24      23  23      11      13  21      22      12        | 
   1|              12      23      13  22      14      12      22      12  23      13        | 
   2|                                                                                        | 
   3|          12      12  11  23      14      13  21      22  23      22  23      11        | 
   4|              23      11              14  11  22      22  23      13  14  14  23        | 
   5|                                                                                        | 
   6|          12  22      12  23      23      13  22      23      13  13  11  22            | 
   7|              13  21      24  23      12      12  22      14  24      13  22            | 
   8|          12      22      13  22      23  23      11  13      14  22      13  24        | 
   9|                                                                                        | 
  10|              12      13      12      13  23      23      11  23      24      11        | 
  11|              12  22      24      22      12  13  13  22      24  22      13            | 
  12|          13      22      13  24      12  14  24      24      12      22      12        | 
  13|          24      13      24      12  13      22      12  24      12  21      14        | 
  14|                                                                                        | 
  15|          13  22      21  22      12      14      12      13  24      23      13        | 
  16|          12  23  11  23  21      22      13  21      14      21      12      13        | 
  17|              12      13      12      12  22      21      12  21      22      12        | 
  18|                                                                                        | 
  19|          14      22      13      22      14      11  23      13  24      13            | 
  20|                                                                                        | 
  21|          14  23      23  24      11  23      22      23      13      12      13        | 
  22|                                  21  12                              24                | 
  23|                                                      22  13                            | 
  24|          12      24      13  22      21  21      12  14      12  22      12  23        | 
  25|              12  21      22      23      12  14  12  21      22  23      14            | 
    +----------------------------------------------------------------------------------------+ 



 
 

 

Figure 6. V and S before binding at Time: 00:00:00:100 (bold boxes represent examples of binding 
structures) 

 
        0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17  18  19  20  21  
    +----------------------------------------------------------------------------------------+ 
   0|          13  32          41  22  32  34  31      44      42  34      31      12        | 
   1|              12      32      44  21      42      12      23      42  32      13        | 
   2|                                                                                        | 
   3|          41      42  41  32      14      42  32      22          33  33      44        | 
   4|              32      43              14  41  34          23      13  43  14  32        | 
   5|                                                          33                            | 
   6|          42  33      44  32      31      43  32      21      44  42  42  34            | 
   7|              42  31      34  32      41      42  23      42  32      44  31            | 
   8|          12      31      41  24      34  33      41  13      43      34  42  31        | 
   9|                                                                                        | 
  10|              42      44      42      41  23      31      43  32      33      11        | 
  11|              41  32      32      33      44  44  13  33      33  33      43            | 
  12|          42      31      41  32      42  43  33      32      12      22      12        | 
  13|          22      41      32      42  13      34      42  32      44  31      14        | 
  14|                                                                                        | 
  15|          41  34      32      33  44      42      42      42  34      32      13        | 
  16|          44  31  42  31  31      31      42  31      44      33      41      13        | 
  17|              12      43      43      42  32      31      44  33              12        | 
  18|                                                                          24            | 
  19|          14          22  13          32  14      42  31      13  33      13            | 
  20|                                                                                        | 
  21|          43  33      22          44  31              22      13      44      13        | 
  22|                          23      32  42              32              33                | 
  23|                                                      33  41                            | 
  24|          12      33      43  31      33  33      42  14      42  23      44  34        | 
  25|              42  32      34              41  42  42  31      34  21      14            | 
    +----------------------------------------------------------------------------------------+ 

Figure 7. V and S after binding at Time: 00:00:00:300 
 
 As illustrated on the above figures, the bold boxes show bindings between synapsin (31-34) 
and vesicle (41-44). The first illustration (Figure 6) represents the initial scenario where 
synapsins (21-24) and vesicles (11-14) are free and have not yet performed bindings. Once 
synapsins walk toward vesicles, the values of the corresponding cells change to 31-34 (bonded 
synapsins) and 41-44 (bonded vesicles). It is shown that vesicles can be surrounded by more than 
one synapsin, but each synapsin can bind to only one vesicle at any time. 
From the above figure we can see the following possible binding scenarios: 

→  corresponds to:         V– S          
  

 →            corresponds to:       S – V                                                                                                 
                                                                                  | 

                                                                           S 
Several initial parameters were tested in order to see the running process of cell nerve with 

different offrate.  

V. PARALLEL AND DISTRIBUTED SIMULATION 
As was mentioned earlier, P-DEVS and Parallel Cell-DEVS extend the standard formalisms 

of their type to allow a higher degree of parallelism in parallel and distributed environments. In 
our research, we have modified CD++ sequential simulator to enable parallel and distributed 
simulations by implementing optimistic synchronization protocol that was first proposed by 
Jefferson as Time Warp mechanism [Jef85]. We have built an optimistic parallel CD++ 
simulator (optimistic PCD++) that executes simulation via several Time Warp processes 
[Mar99] by exchanging time-stamped event messages using MPI [Gro96]. The Time Warp 
protocol used by PCD++ simulator consists of two parts: the local control mechanism and the 
global control mechanism. The local control mechanism which is provided in each Time Warp 
process is in charge of rollback operations which include: sending anti-messages, restoring the 
state of the LP, readjusting Local Virtual Time (LVT), etc. On the other hand, the global control 
mechanism takes care of global issues such as memory management, I/O operations, and 
termination detection.  

Our optimistic PCD++ simulator employs a layered architecture, where each layer depends 
only on the layers below it. Figure 8 represents these layers. 
 

 



 
 

 

 

 

 

Figure 8. Layered architecture of PCD++ [Gli04] 
 

On the bottom of the architecture the operating system resides. We have chosen Linux 
Operating System as the underlying platform on which our simulator runs. Above the Operating 
System lies the Message Passing Interface (MPI). MPI is a standard specification of message-
passing library for high-performance communications on both massively parallel machines and 
on workstations clusters. The Operating System with the use of MPI provides the 
communication infrastructure for the PCD++ simulator. We have used MPICH [Gro96] portable 
implementation of MPI which provides a vehicle for MPI implementation research and for 
developing parallel and distributed applications. The WARPED [Rad98] simulation kernel is our 
next layer which serves as a configuration middleware that implements the Time Warp 
mechanism and a verity of optimization algorithms. On top of the WARPED kernel we have our 
PCD++ simulator implementing the Parallel DEVS and Cell-DEVS formalisms which provides 
the frame work for building and executing DEVS and Cell-DEVS models in distributed 
environments using the Time Warp protocol.  

PCD++ implements a flattened structure for the simulation framework. Two types of CD++ 
processors exist on PCD++: Flat Coordinator (FC) and Node Coordinator (NC). This approach 
reduces the communication overhead by flattening the structure of the simulation framework. 
The class hierarchies in the modeling and the simulation frameworks are shown in Figure 9. 

 
Figure 9. Processor hierarchy 

 
As seen on the diagram, there are four types of PCD++ processors during the simulation: 

Simulator, FC, NC, and RC. When DEVS and Cell-DEVS models are executed over multiple 
machines, a distributed processor structure is constructed in PCD++ to carry out the simulation. 
Lets consider the following example to see how partitioning takes place when simulating a 
coupled DEVS or Cell-DEVS model on two machines using PCD++ simulator. Figure 10 
represents this scenario. In this example there are four atomic models (A1, A2, A3, and A4) 
where A1 and A2 are grouped by the coupled model C1, and C1, and the other two atomic 
models A3, and A4 are then grouped by the TOP coupled model. The whole model is referred to 
as TOP model. Since we will execute the simulation on two machines, there will be two 
partitions encapsulating the atomic models two by two. Partition 0 will take care of A1 and A2, 
and partition 1 will be responsible for A3 and A4. By partition we mean the machine that will 
run the simulation.  

MPI 
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Parallel CD++ 
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Figure 10. Example model and partition definition 

 
Moreover, a graphical representation of the distributed processors structure of this example is 

illustrated by Figure 11 . 

 
Figure 11. Distributed processor structure for the example  

 
For this example, two logical processes are created, one per each machine: LP0 and LP1. LPs 
group together the PCD++ processors on the machine they belong to. Two types of messages 
exist: remote messages and local messages. Local messages are exchanged among those 
Simulators which reside on the same LP, while remote messages are exchanged among 
simulators residing on LPs other than the one they are originating from. Local messages are 
handled by the FC, and the remote messages are handled by the NC and then sent to the 
appropriate Simulator through the destination FC. The root coordinator is created only on 
machine 0. It starts the simulation and handles I/O operations. The NC which exists on each 
machine is the local central controller on each LP and the end point of inter-LP communications. 
The FC residing between the NC and the Simulators is responsible for synchronizing the 
execution of its child Simulators. Finally, the Simulator is responsible for executing DEVS 
abstract functions defined in the atomic models. When a Simulator sends a message to another 
Simulator sitting on a remote machine, the message is first directed to the FC, then to the local 
NC through direct communication. Once the message gets to the NC, it will be forwarded to the 
destination NC through MPI communication. On the receiving end, the NC will then forward the 
message to the destination Simulator through the child FC.  
 In PCD++, two types of communications exit among LPs: synchronous intra-LP 
communications which are carried out by all types of PCD++ processors (i.e. Simulator, NC, FC, 
RC), and asynchronous inter-LP communications carried out by NCs. Since inter-LP 
communications are asynchronous, the NCs require a special structure named as NC Message 
Bag to handle the message passing between LPs who have different local virtual times. The 
following properties hold for NC Message Bag: 

1. Messages inside a Message Bag can have different timestamps. 
2. The time of a Message Bag is equal to the minimum timestamp among the contained 

messages. If the Message Bag is empty, then its time is set to infinity.  
3. Messages inside a Message Bag are processed based on their timestamp in an increasing 

order. That is the message whose timestamp is equal to the Message Bag’s time is 
processed first. Once the message is processed, it is then removed from the bag, and the 
bag’s time is advanced to the next minimum value among the timestamps of the 



 
 

remaining messages. Once all the messages are processed and removed from the bag, the 
Message Bag’s time is restored back to infinity implying that the bag is empty. 

In contrast, synchronous intra-LP communications are handled by the Simulators and the FC 
since they are local to the LP and do not pass the boundary of the LP. Similar to the NC Message 
Bag, for intra-LP messages the FC holds a message bag. In this case, when two local Simulators 
(i.e. sitting on the same LP) need to communicate to each other, they send the message to the 
local FC, and then the message will be directed to the destination local Simulator by the FC. 
There is no direct communications between Simulators, even the ones sitting on the same LP. 
Local Simulators can only communicate to each other through their FC. This is the purpose of 
having FC message bag. PCD++ messages are in form of data objects which are dynamically 
allocated and deleted by the PCD++ processors.  

PCD++ processors exchange two categories of messages: content messages and control 
messages. The first category includes the external message (x) and the output message (y), and 
the second category includes the initialization message (I), the collect message (@), the internal 
message (*), and the done message (D). To describe these messages, external and output 
messages are used to exchange simulation data between the models, initialization messages start 
the simulation, collect and internal messages trigger the output and the state transition functions 
respectively in the atomic DEVS models, done messages handle synchronization by carrying the 
model timing information. The simulation is executed in a message-driven manner.  

Each type of PCD++ processor, define its own receive functionality for each type of messages. 
Let’s what happens at each PCD++ processor considering the scenario of reception of different 
types of messages: 
Simulator: upon receiving (I, 0) from the parent FC, two variables are used to record the current 
simulation time (tL) and the value of sigma (ta). Upon receiving the initialization message, (I, 0), 
the Simulator resets tL to the timestamp of the message, therefore the Simulator’s virtual time 
now is equal to zero. Then the simulator initializes the variables defined in its associated atomic 
model, and after that, it informs its parent FC of the value of ta by sending a done message 
stamped with time 0. When a (@, t) message is received, the Simulator invokes the output 
function (λ) of the atomic model and as a result an output message (y, t) is sent to the FC. After 
this, the Simulator will send (D, t) to the FC with ta = 0 to indicate that it is imminent. Following 
the collect message, a (*, t) will arrive to trigger internal/external/confluent function of the 
atomic model depending on the timing of the message and the status of the Simulator’s message 
bag. The last message that may arrive at the Simulator is (x, t) which is simply inserted into the 
Simulator’s message bag. 
Flat Coordinator: when (I, 0) is received, the FC records the total number of its children in a 
variable named as doneCount then forwards the (I, 0) message to each child. After this, the FC 
waits for all its children to respond to this initialization by sending back a (D, 0). The FC will 
only pass the control over to the NC if all its children have finished their previous computation 
and have sent done messages as notification messages. Upon receiving a (@, t) message, the FC 
forwards it to all imminent Simulators and will keep a record of this for later use (to know which 
children need to do state transitions when (*, t) is received). Moreover, when (y, t) is received, 
the FC searches the model coupling information to find out the correct destination. The 
destination is either an input port on an atomic model, or an output port on the topmost coupled 
model. In case of receiving (x, t) message, the FC will simply insert the message into its message 
bag. Upon receiving (*, t) message, the external messages inside the FC’s message bag are 
flushed to the local receiving Simulators. This will trigger the imminent Simulators to perform a 
state transition. Finally, when a (D, t) message is received from a child Simulator, the FC 
updates the child’s tN to the sum of the current simulation time and the sigma value carried by 
the received (D, t)    message. 
Node Coordinator: upon receiving (I, 0), the NC simply forwards it to the child FC. In case of 
receiving (x, t), NC will insert this message into the NC Message Bag. These external messages 
contain values sent from remote Simulators to local ones. When (y, t) is received the NC simply 
forward it the Root (it has to be sent to the environment). Reception of a (D, t) message by the 
NC from a child FC indicates that this is a response to a control message that was previously 
sent out by the NC.  



 
 

Root Coordinator: this processor only handles environment-oriented output messages during 
the simulation. Output to the environment is done through a test file called as output file or OUT 
file.  

Aside from the functionalities of each of the PCD++ processors, we have modified the 
WARPED [Mar99] kernel in order to run simulations under different protocols. These protocols 
are modifications of the optimistic one that WARPED implements. The idea is to reduce the 
number of rollbacks by suspending the LP that has large number of rollbacks and therefore 
stopping it from flooding the net with anti-messages. However, the LP will still be able to 
receive input events and they will be inserted into the corresponding message bags. After a 
predefined duration, the suspend LP is released and will go on simulating. These two protocols 
[Szu00], namely Local Rollback Frequency Model (LRFM) and Global Rollback Frequency 
Model (GRFM) are based on the “Near Perfect State Information - NPSI” protocol [Sri98]. The 
NPSI protocol implements the Elastic Time mechanism. Briefly, Elastic Time is composed of 
two parts: 

1. Identifying the NPSI of the simulation. 
2. Translating the NPSI in optimism on the simulation objects.  

Each part can be implemented in many ways. The main concept is to associate each LP with a 
potential error (PE) to control the optimism of LPi. During the simulation run, the value of each 
PE is kept updated by evaluating a function called M1 which uses state information that is 
received from the feedback system. Then, the function M2 translates dynamically every update 
of PEi in delays in the execution events.  

VI. LOCAL ROLLBACK FREQUENCY MODEL 
The Local Rollback Frequency Model (LRFM) protocol is only based on local information of the 
logical processes. That is, the simulation object within a LP will be suspended or allowed to 
continue simulating only based on the number of rollbacks it had. First M1 and M2 functions 
must be defined: 
 
- Function M1: The potential error of a simulation object is the number of rollbacks that the 
object had from a time T1 until the actual time T2, having that T2 - T1 <= T, where T is the 
interval after which the local number of rollbacks of the simulation object gets restarted back to 
zero. 
 
- Function M2: If the number of rollbacks for a simulation object at the interval T is greater than 
a specified value, then the object is suspended, adopting a conservative behavior. By suspending 
the simulation object, the LP where the object resides on will still be able to receive incoming 
events, but the events are not processed until the simulation object is again given the chance to 
resumes. However, if the number of rollbacks of the simulation object is less than the predefined 
value, then the object simulates aggressively, adopting its usual optimistic behavior (Time 
Warp).  

To implement this protocol each LP has to be informed about two values: max_rollback, and 
period. Where max_rollback is the maximum number of allowed rollbacks before suspension of 
the simulation object, and period is the duration for which the simulation object will stay 
suspended. The algorithm is presented in Figure 12. 
 
 

1. In each LP, at the beginning predefine: 
 max_rollbacks and period 
2. In each simulation object, at the simulation start:  
 previous_time  = 0 
3. In each object, when the LP is scheduled to run:  
 actual_time = Warped.TotalSimulationlTime () 
  if (actual_time - previous_time >= period) 
    simulateNextEvent() 
    previous_time  = actual_time 



 
 

    rollbacks = 0  
  else  
   if  (rollbacks < max_rollbacks)  
    simulateNextEvent() 
   /* else, SUSPEND the simulation object */ 

Figure 12. LRFM Algorithm 

VII. GLOBAL ROLLBACK FREQUENCY MODEL 
In Global Rollback Frequency Model (GRFM) protocol each simulation object uses global 

information in such a way that among all the simulation objects residing on all LPs, the one with 
greatest number of rollbacks must be suspended for the duration of time defined at the beginning 
of the simulation. Therefore, at each simulation cycle all the LPs must broadcast the information 
regarding the rollback counts of all of their simulation objects. As in LRFM, M1 and M2 
functions must first be defined: 
Function M1: The potential error of a simulation object is the number of rollbacks that the 
object had minus the maximum number of rollback of the other simulation objects of the 
simulation, from a time T1 until the actual time T2, having that T2 - T1 <= T, where T is the 
interval after which the local number of rollbacks of the simulation object gets restarted back to 
zero. 
Function M2: If the number of rollbacks for a simulation object at the interval T is greater than 
other number of rollbacks of the other simulation objects, then the object is suspended, adopting 
a conservative behavior. By suspending the simulation object, the LP where the object resides on 
will still be able to receive incoming events, but the events are not processed until the simulation 
object is again given the chance to resumes. However, if the number of rollbacks of the 
simulation object is less than the predefined value, then the object simulates aggressively, 
adopting its usual optimistic behavior (Time Warp).  
 
This algorithm is implemented as follows: 
 
1. In each LP, at the beginning predefine: period 
2. In each simulation object, at the beginning predefine: 
        previous_time  = 0  
        max_rollbacks = 0 
3. In each simulation object, when the LP is scheduled to run: 
       actual_time = Warped.TotalSimulationlTime () 
if (actual_time - previous_time >= period) 
    simulateNextEvent() 
   previous_time  = actual_time 
   rollbacks = 0  
else  
   if  (rollbacks < max_rollbacks)  
         simulateNextEvent() 
/* else, SUSPEND the simulation object */ 
4. For i from 1 until the number of LPs 
if (i is NOT this PL id) 
send to LP i the number of rollbacks of the objects of the LP id 
Subroutine that receives the number of rollbacks from other LP: 
For j from 1 until the numbers received 
If (rollbacks[j] > max_rollbacks) 
max_rollbacks = rollbacks[j] 

Figure 13. GRFM Algorithm 
 

With LRFM and GRFM different simulation results can be collected since the RFM period (and 
in case of LRFM the max_rollbacks) can be modified very easily at the beginning of the 
simulation. This is done by changing these values in the configuration files right before the 



 
 

simulation starts and therefore, there is no need to rebuild the whole simulator in order for these 
modifications to have effect.  

VIII. SIMULATION RESULTS 
After modifying WARPED kernel of PCD++ simulator to include LRFM and GRFM, the Ship 
Evacuation model and Synapsin-Vesicle Reaction model were executed and results were 
collected. To study the performance of our optimistic PCD++ simulator, the experiments were 
first carried out on standalone CD++ on a single machine, and then on a cluster. The cluster 
consisted of 32 compute nodes (dual 3.2 GHz Intel Xeon processors, 1GB PC2100 266MHZ 
DDR RAM) running Linux WS 2.4.2.1 interconnected through Gigabit Ethernet and 
communicating over MPICH 1.2.6.  

The metric used to measure the performance of PCD++ simulator is the Execution Time which 
is the total execution time of the simulation collected from the execution environment. During 
the experiment, results of execution of both protocols; the LRFM and GRFM were conducted 
and the Overall Speedup which is defined as follows was calculated. 

Overall Speedup = T(1) / T(N) 
Table 2 represents the execution of both models on single machine using the standalone 

sequential CD++ simulator.  
Model Total Execution Time (sec) 

Ship Evacuation 6.4327 
Synapsin-Vesicle Reaction 3.7621 
Table 2. Results of standalone CD++ simulator 

 
Then, simulations were run for both models on 1 to 8 nodes and for each node five trials 

were collected. The values shown on the graph (Figure 14, Figure 15) are the average of these 
five trials for each node which are within a confidence interval of 95%. 
 

Ship Evacuation Execution Time

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8

Number of nodes

E
se

cu
tio

n 
Ti

m
e 

(s
ec

)

LRFM
GRFM

 
Figure 14. Execution time of Ship Evacuation model with LRFM and GRFM protocols 
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Figure 15. Execution time of Synapsin-Vesicle Reaction model with LRFM and GRFM protocols 

 
The following figures show the speedups for both models: 
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Figure 16. Speedups of Ship Evacuation model with LRFM and GRFM protocols 
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Figure 17. Speedups of Synapsin-Vesicle Reaction model with LRFM and GRFM protocols 

IX. CONCLUSION 
We have introduced two new simulation techniques for P-DEVS and Cell-DEVS optimistic 
simulator by modifying Time Warp, a well-known optimistic synchronization protocol. Our 
efforts address the need for efficient, fast execution of models using parallel and distributed 
simulation. We propose an optimistic-based mechanism to reduce the number of rollbacks and 
anti-messages. Our two algorithms, namely Local Rollback Frequency Model (LRFM) and 
Global Rollback Frequency Model (GRFM) are implemented as modifications of the optimist 
one that Time Warp implements. The use of LRFM and GRFM enable achieving higher 
speedups and lower execution times. Under our new protocols, during the simulation objects 
with a large number of rollbacks are suspended for a predefined period (although the objects will 
continue receiving input events). The idea is to stop the objects with large number of rollbacks 
from flooding the simulation with anti-messages and only allowing the rest of objects to 
advance. These new protocols are based on the Near Perfect State Information protocol. The 
execution results (based on two Cell-DEVS models) showed better performance than stand-alone 
execution. Using more complex and larger models will show considerable speedups. 
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