

Abstract— DEVS is a sound formal modeling and simulation (M&S) framework based on
generic dynamic system concepts. Cell-DEVS is a formalism for cell-shaped models based
on DEVS. This work presents a new simulation technique for execution of DEVS and Cell-
DEVS models in parallel environments. These techniques are modifications to the original
Time Warp mechanism offered by WARPED kernel. Time Warp functionalities are
revised to include two new algorithms namely, Local Rollback Frequency Model (LRFM)
and Global Rollback Frequency Model (GRFM). The resultant simulator is used as new
simulation engine for CD++, a M&S toolkit that implements DEVS and Cell-DEVS
theories. The results obtained allowed us to achieve considerable speedups due to the
reductions that LRFM and GRFM protocols perform on number of rollbacks and anti-
messages.

Index Terms— Cellular Automata, Parallel Simulator, Cell-DEVS, Optimistic Simulator.

I. INTRODUCTION
ODELING and simulation (M&S) methodologies have become crucial for implementing,
designing, and analyzing a broad verity of systems. Among the existing simulation techniques,
DEVS (Discrete Event System Specification) formalism [Zei00] provides a discrete-event M&S
approach which allows construction of hierarchical models in a modular manner. DEVS is a
sound formal framework based on generic dynamic systems concepts that allows model reuse,
and reduction in development and testing time due to its hierarchical approach in constructing
models. Cell-DEVS [Wai01] is an extension to DEVS which integrates DEVS and cellular
automata by presenting each cell as an atomic DEVS model. Cell-DEVS introduced a novel
mechanism for computation based on asynchronous cellular models with explicit timing
constructions. The technique has been used to develop a wide variety of models in different
field, ranging from environmental sciences, traffic, biology and physics.

When large complex models are defined, the computing power of a single computer degrades.
In these cases, a parallel simulator can improve execution times. Here, we present new
techniques for executing DEVS and Cell-DEVS models in parallel and distributed environments
based on the WARPED kernel [Mar99], an implementation of the Time Warp protocol [Jef85].
Our optimistic simulator, called as PCD++, is built as a new simulation engine for CD++
[Wai02], a M&S toolkit that implements the DEVS and Cell-DEVS formalisms. Algorithms in
CD++ and the WARPED kernel are redesigned based on Near Perfect State Information technique
to carry out optimistic simulations using a non-hierarchical approach that reduces the
communication overhead. Two new algorithms namely, Local Rollback Frequency Model

An Environment for Advanced Parallel
Simulation of Cellular Models

Shafagh Jafer Gabriel A. Wainer

Department of Systems and Computer Engineering, Carleton University, Ottawa, ON K1S 5B6
Canada (phone: 613-520-2600 x 1957; e-mail: {sjafer,gwainer@sce.carleton.ca}).

M

(LRFM) and Global Rollback Frequency Model (GRFM) have been implemented and used by
our PCD++ simulator. These two algorithms have been tested using different Cell-DEVS
models. Here we present an evacuation model of a ship and a model of the Synapsin-Vesicle
reaction in neurons.

II. BACKGROUND
DEVS [Zei00] is a formalism for modeling and simulation of DEDS (Discrete Events Dynamic
Systems) which provides a framework for the definition of hierarchical models in a modular way
by decomposing the real system into behavioral (atomic) and structural (coupled) components.
DEVS theory provides a rigorous methodology for representing models, and it does present an
abstract way of thinking about the world with independence of the simulation mechanisms,
underlying hardware and middleware. A DEVS atomic model is formally defined by:

M = <X, Y, S, δint, δext, λ, ta>,
where
X = {(p,v) | p ∈ IPorts, v ∈ Xp}
 is the set of input ports and values;
Y = {(p,v) | p ∈ OPorts, v ∈ Yp}
 is the set of output ports and values;
S is the set of sequential states;
δint: S → S is the internal state transition function;
δext: Q × X →S is the external state transition function, where
Q = {(s,e) | s ∈ S, 0 < ∈ < ta(s)} is the total state set, e is the time elapsed since the last state transition;
λ: S →Y is the output function;

ta: S → R+
0,∞ is the time advance function.

The semantics for this definition is given as follows. At any time, a DEVS coupled model is in a
state s ∈ S. In the absence of external events, the model will stay in this state for the duration
specified by ta(s). When the elapsed time e = ta(s), the state duration expires and the atomic
model will send the output λ(s) and performs an internal transition to a new state specified by
δint(s). Transitions that occur due to the expiration of ta(s) are called internal transitions.
However, state transition can also happen due to arrival of an external event which will place the
model into a new state specified by δext(s,e,x); where s is the current state, e is the elapsed time,
and x is the input value. The time advance function ta(s) can take any real value from 0 to ∞. A
state with ta(s) value of zero is called transient state, and on the other hand, if ta(s) is equal to ∞
the state is said to be passive, in which the system will remain in this state until receiving and
external event.

A DEVS coupled model is composed of several atomic or coupled submodels, which is
formally defined by:

CM = <X, Y, D, {Md | d∈D}, EIC, EOC, IC, Select>,
where
X = {(p,v) | p ∈ IPorts, v ∈ Xp} is the set of input ports and values;
Y = {(p,v) | p ∈ OPorts, v ∈ Yp} is the set of output ports and values;
D is the set of the component names, and the following requirements are imposed on the components, which
must also be DEVS models:
For each d ∈ D, Md = (Xd, Yd, Sd, δint, δext, λ, ta) is a DEVS with
Xd = {(p,v) | p ∈IPortsd, v∈Xp},

 and Yd = {(p,v) | p ∈ OPortsd, v∈ Yp}.
The component couplings are subject to the following requirements:

External input coupling (EIC) connects external inputs to component inputs,
EIC⊆ {((N, ipN), (d, ipd)) | ipNe IPorts, d∈D, ipd∈IPortsd};
External output coupling (EOC) connects component outputs to external outputs,
EOC⊆ {((d, opd), (N, opN)) | opN∈ OPorts, d∈D, opd∈OPortsd};
Internal coupling (IC) connects component outputs to component inputs,
IC⊆{((a, opa), (b, ipb)) | a, b∈D,opa∈OPortsa, ipb∈IPortsb};
Select: 2D - {} → D is the tie-breaking function for imminent components.

Due to the closure property, a coupled model is regarded as a new DEVS model [Zei00].
This property clarifies that the overall behavior of a coupled model is equivalent to a basic
atomic model, and therefore allows hierarchical model construction.

Cell-DEVS [Wai01] is an extension to DEVS which integrates DEVS and cellular automata
by presenting each cell as an atomic DEVS model. Two types of timing delays can be used,
namely transport and inertial [Wai00]. When transport delay is used, the future value is added to
queue sorted by output time, allowing the previous values that were scheduled for output but
have not yet been sent to be kept. On the other hand, inertial delays allow a preemptive policy at
which any previous scheduled output value will be deleted and the new value will be scheduled.
Cell-DEVS formalism is defined by:

TDC = < X, Y, I, S, θ, N, d, δint, δext, τ, λ, D >
where
 X is a set of external input events;
 Y is a set of external output events;

I represents the model's modular interface;
S is the set of sequential states for the cell;
θ is the cell state definition;
N is the set of states for the input events;
d is the delay for the cell;
δint is the internal transition function;
δext is the external transition function;
τ is the local computation function;
λ is the output function; and
D is the state's duration function.

By integrating atomic Cell-DEVS, coupled models can be constructed representing the cell
space. A coupled Cell-DEVS model is formally defined as follows:

GCC = < Xlist, Ylist, I, X, Y, n, {t1,...,tn}, N, C, B, Z, select >
where

Xlist is the input coupling list;
Ylist is the output coupling list;
I represents the definition of the model’s interface;

 X is the set of external input events;
Y is the set of external output events;
n is the dimension of the cell space;
{t1,...,tn} is the number of cells in each of the dimensions;
N is the neighborhood set;
C is the cell space;

B is the set of border cells;
Z is the translation function; and

select is the tie-breaking function for simultaneous events.
 The above formalism explains that a coupled model is composed of an array of atomic cells

with given size and dimensions where each cell is connected through standard DEVS
input/output ports to the cells defined in the neighborhood. Since the cell space is finite, the
borders of the cells are either connected to a different neighborhood than the rest of the space, or
they are “wrapped” in which they are connected to those in the opposite one using the inverse
neighborhood relationship. However, border cells have a different behavior due to their
particular locations, which result in a non-uniform neighborhood. A Cell-DEVS coupled model
is informally presented in Figure 1.

Figure 1. Description of a Cell-DEVS atomic model[Wai00]

CD++ [Wai02] is a modeling tool that implements the DEVS and Cell-DEVS theories by
applying the original formalisms. The toolkit includes facilities to build DEVS and Cell-DEVS
models. CD++ toolkit also includes an interpreter for Cell-DEVS models [Wai00]. The language
is based on the formal specifications of Cell-DEVS. The model specification includes the
definition of the size and dimension of the cell space, the shape of the neighborhood and the type
of cell’s bordering. The cell’s local computing function is defined using a set of rules with the
form POSTCONDITION DELAY
{ PRECONDITION }. These indicate that when the PRECONDITION is met, the state of the cell
will change to the designated POSTCONDITION after the duration specified by DELAY. If the
precondition is not met, then the next rule is evaluated until a rule is satisfied or there are no
more rules. The next section will present two Cell-DEVS models generated with CD++ toolkit.

In parallel and distributed environments the entire task of simulation is divided among the
processors or nodes (Logical Process (LP)) and therefore each one of them handles a smaller
chunk of the simulation while the whole process of execution takes place in parallel and as a
result in a significantly reduced time. In sequential simulations, events are executed base on
timestamp order, therefore the correctness of the result is automatically guaranteed. In contrast,
parallel and distributed simulations require a mechanism to ensure that the result of concurrent
execution is identical to that of sequential one. To obtain this correctness, Local Causality
Constraint [Fuj00] must be satisfied. This requirement is said to be met if and only if each
process executes events in non-decreasing timestamp order. Therefore, synchronization among
LPs is the most challenging problem of parallel and distributed simulation. There exist three
different types of synchronization strategies for event driven simulations:

1. No synchronization at all: synchronization is ensured by the application.
2. Pessimistic (conservative) synchronization [Bry77]: causality violations are strictly

avoided.
3. Optimistic synchronization [Jef85]: causality errors are fixed by the notion of rollbacks.

Conservative parallel discrete event simulation: This synchronization approach disallows
any occurrence of causality errors. The essential for this technique is the lookahead which
provides the smallest time stamp of the new events that a process can schedule in the future. Null
messages are responsible to carry out the lookahead information among LPs. This way each LP,
based on the lookahead information that it receives from all other LPs can derive a lower bound
on the time stamp (LBTS) of the events that it will receive in future. As a result, the LP would
know which event is safe to process. The biggest drawback of the conservative synchronization
approach is the time wasting flow of null messages which degrade the simulation performance
significantly. Having the fact that optimistic approaches lack in terms of causality errors
avoidance, however, they offer two important advantages over conservative techniques:

1. Optimistic approaches have a higher degree of parallelism unlike the conservative
approaches where they are overly pessimistic and force the simulation to behave
sequentially when in is not necessary.

2. Conservative approaches rely very much on application-specific information when
making run-time decisions on whether it is safe to process the event or not. But
optimistic mechanism are less reliant on the application for correct execution, therefore
allow a simplified software development and more transparent synchronization.

Optimistic parallel discrete event simulation: In this technique which was first proposed

by Jefferson’s Time Warp mechanism [Jef85], each LP has a Local Virtual Time (LVT) which
advances every discrete step as events are executed on the process. Therefore, time warp
processes execute their own portion of the simulation based on LP’s LVT. Since every LP has its
own LVT, causality errors occur when LPs send messages to each other. This way, an LP may
receive a message with time stamp smaller than its current LVT. Such events are referred to as
straggler events. Once a straggler event is received the process will rollback. Rollback is the
operation performed upon reception of a straggler event, where the process recovers from the
causality error by undoing the effects of all the events that were processed and had timestamp
greater than the time stamp of the straggler event. Therefore, these messages were falsely sent to
other processes and now must be canceled. This cancellation is performed by sending anti-
messages. The anti-message has exactly the same format as the original message (the positive
message) except for a negative flag to indicate it is an anti-message.

Our PCD++ optimistic simulator implements the Parallel DEVS and Cell-DEVS formalisms
and provides the frame work for building and executing DEVS and Cell-DEVS models in
distributed environments using the Time Warp protocol. PCD++ implements a flattened structure
for the simulation framework. Two types of CD++ processors exist on PCD++: Flat Coordinator
(FC) and Node Coordinator (NC). This approach reduces the communication overhead by
flattening the structure of the simulation framework.

III. SHIP EVACUATION MODEL
The first Cell-DEVS model we represent here is the illustration of an emergency ship evacuation
scenario [Klu01]. The model consists of 20×20 cell space in CD++. The rules defining the
model are based on the following restrictions:

1. Each cell representing a person on the ship, calculates its shortest path toward the exit.
During initialization phase, people are placed randomly in any empty cell to imitate real
ship evacuation scenario.

2. People run in their initial direction until they encounter another person or an obstacle
(e.g. wall).

At the end of simulation, there should be no one left on the ship, i.e. all people must have been
left through the exit doors.

UU (-2,0)

U (-1,0)

(0,0)

D (1,0)

UL (-1, -1)

L (0, -1)

DL (1, -1) DR (1, 1)

R (0, 1) RR (0, 2)

UR (-1, 1)

The neighborhood of each cell consists of 10 cells which will affect the cell’s movement (i.e.
they can be walls, exit doors, people, or empty cells) as shown in

Figure 2.

Figure 2. Cell neighborhood
From the above figure we can see that the neighborhood consists of 11 cells: {(-2,0), (-1,-1), (-
1,0), (-1,1), (0,-1), (0,0), (0, 1), (0, 2), (1, -1), (1,0), (1, 1)} where UU is the upper’s upper cell,
UL is the upper’s left cell, U is the upper cell, UR is the upper’s right cell, L is the left cell, R is
the right cell, RR is the right’s right cell, DL is the down’s left cell, D is the down cell and DR is
the down’s right cell. Each value on the cell space defines a distinct state, such as the type of the
cell: wall, empty, exit door, a moving person. Also each type of movement is given a state value
in order to identify the next position of the person. Table 1 summarizes these values.

Name Value Comments
N/A 0 Unknown Empty cell.
Wall 1 Represents an obstacle or a wall.
Exit 2 Represents an exit (e.g. stairs, door).
ED 3 Empty cell and its down (D) cell is the

shortest path to the nearest exit.
ER 5 Empty cell and its right (R) cell is the

shortest path to the nearest exit.
EU 7 Empty cell and its up (U) cell is the

shortest path to the nearest exit.
EL 9 Empty cell and its left (L) cell is the

shortest path to the nearest exit.
FD 4 A Full cell (cell with person) and its

down (D) cell is the shortest path to the
nearest exit.

FR 6 A Full cell (cell with person) and its
right (R) cell is the shortest path to the
nearest exit.

FU 8 A Full cell (cell with person) and its up
(U) cell is the shortest path to the nearest
exit.

FL 10 A Full cell (cell with person) and its left
(L) cell is the shortest path to the nearest
exit.

Table 1. State values and their description

Based on these values, we define different rules for the movement of people in the vessel. The
first four rules initialize the model by calculating the shortest path for each undefined cell and
placing people on the cell space randomly.

Result Precondition
3 or 4 (ED or FD) (0,0) = Undefined and (1,0) is defined.
5 or 6 (ER or FR) (0,0) = Undefined and (0,1) is defined.
7 or 8 (EU or FU) (0,0) = Undefined and (-1,0) is defined.
9 or 10 (EL or FL) (0,0) = Undefined and (0, -1) is

defined.

The algorithm works as follows: when a cell detects that one of its attached cells has changed its
state to “defined”, it would know that the attached cell is the shortest path. The above four rules
are implemented as the following:

rule: {3+randInt(1)} 0 {(0,0)=0 and (1,0)>1 and (1,0)<11}
rule: {5+randInt(1)} 0 {(0,0)=0 and (0,1)>1 and (0,1)<11}
rule: {7+randInt(1)} 0 {(0,0)=0 and (-1,0)>1 and
(-1,0)<11}
rule: {9+randInt(1)} 0 {(0,0)=0 and (0,-1)>1 and (0,-1)<11}

Then the second four rules define the case when a cell knows that a person will move
towards it. The cell knows it will soon be occupied by a person if it is empty and it is the shortest
path to at least one cell with a person occupying it.

Result Precondition
 4
→ FD state

(0,0) = ED and ((0,1) = FL or (-1,0) = FD
or (0,-1) = FR)

6
→ FR state

(0,0) = ER and ((1,0) = FU or (-1,0) = FD
or (0,-1) = FR)

8
→ FU state

(0,0) = EU and ((1,0) = FU or (0,1) = FL
or (0,-1) = FR)

10
→ FL state

(0,0) = EL and ((1,0) = FU or (0,1) = FL
or (-1,0) = FD)

The third four rules define when a cell occupied with a person is attached to the exit. Then,

the cell knows that a person will leave it and exit.
Result Precondition

 3→ ED state (0,0) = FD and (1,0) is exit
5→ ER state (0,0) = FR and (0,1) is exit
7→ EU state (0,0) = FU and (-1,0) is exit
9→ EL state (0,0) = FL and (0,-1) is exit

Then the fourth four rules define when a cell knows that a person will leave it when it is not

near an exit. The cell knows that a person will leave it when it is already occupied by a person
and its shortest path cell is empty. However, only one person can move to the empty cell when
more than one person is trying to move to the same cell. In this case, the priority is first with the
person who is in the upper cell, second the one in the right cell, third the one in the down cell,
and finally the one in the left cell has the lowest priority.

Result Precondition
 3→ ED state (0,0) = FD and down (D) cell is empty.
5→ ER state (0,0) = FR and right cell (R) is empty and

UR,RR, and DR cells don’t have a person
moving to R.

7→ EU state (0,0) = FU and upper cell (U) is empty and
UU and UR cells don’t have a person moving

Result Precondition
to U.

9→ EL state (0,0) = FL and left cell (L) is empty and UL
doesn’t have a person moving to L.

Finally if none of the rules are evaluated, the following rule which serves as a default case,
will evaluate. A cell executing this line will remain unchanged and stay as before.

rule : {(0,0)} 100 { t }

Figure 3 shows an extract of the model’s definition in CD++.

[top]
components : ship

[ship]
type : cell dim : (20,20) delay : transport
defaultDelayTime : 20 border : nowrapped

neighbors : (-2,0) (-1,-1) (-1,0) (-1,1) (0,-1)
neighbors : (0,0) (0,1) (0,2) (1,-1) (1,0) (1,1)
…
localtransition : ship-rule
[ship-rule]
rule : {3 + randInt(1)} 0 {(0,0)=0 and (1,0)>1 and (1,0)<11}
…
rule : 4 100 {(0,0)=3 and ((0,1)=10or(-1,0)=4 or (0,-1)=6)}
…
rule : 3 100 { (0,0) = 4 and (1,0) = 2}
…
rule : 3 100 { (0,0) = 4 and odd((1,0)) }
…
rule : {(0,0)} 100 { t }

Figure 3. Definition of ship evacuation model in CD++

The ship evacuation model can be modified by adding more exit doors or changing the

position of these cells. As presented in Figure 4 initially four different types of cells appear on
the grid: empty spaces, walls, people, and exit doors, while the final result of the simulation
shows no presence of people, i.e. the ship is evacuated.

Figure 4. Model Execution Results; initial values; final execution

IV. SYNAPSIN-VESICLE REACTION MODEL
The second model we built was the reserve pool of synaptic vesicles in a presynaptic nerve

terminal, predicting the number of synaptic vesicles released from the reserve pool as a function
of time under the influence of action potentials at differing frequencies. Time series
amounts for the components are obtained using rule-based methods (the rules defined by Cell-
DEVS) [Ala07].

Synapsin is a neuron-specific phosphoprotein that binds to small synaptic vesicles and actin
filaments in a phosphorylation-dependent pattern. Microscopic models have demonstrated that
synapsin inhibits neurotransmitter release either by forming a cage around synaptic vesicles
(cage model) or by anchoring them to the F-actin cytoskeleton of the nerve terminal [Ben90].

We modeled the molecular interaction of synapsin (S) with vesicles (V) which occur inside a
nerve cell. The model describes the behavior of synapsin movements until reaching a vesicle and
binding to it. Once binding has occurred, depending on offrate V and S can again go apart and
break their bindings. The onrate and offrate describe how often bindings occur or break then
after. The following formula describes the nature of the reaction:

S + V ↔ SV
From the above formula, the left hand side of the equation demonstrates the binding scenario

where synapsin and vesicles perform a bind at a rate specified by onrate, while the right hand
side of the equation illustrates the bind-break scenario where an synapsin-vesicle at an offrate
which is always smaller than onrate breaks apart and again synapsin and vesicles get released.
Then, synapsin and vesicles can again perform binding and break apart then after. This equation
shows an on-going process of “binding” and “breaking apart” which depends on offrate/onrate.
The larger the offrate is, the more bindings get broken apart. Similarly, the larger the onrate is,
the more V-S binds are produced. Three different scenarios are modeled: 1) V is stationary (with
a fixed position on cell space), and S is mobile, 2) V is mobile and S is stationary, and 3) V and
S are both mobile (leads to maximum number of total movements and therefore bindings).

The coupled Cell-DEVS model for this application is described as follows.
 M=<I,X,Y,Xlist,Ylist,η, N,{m,n}, C, B, Z, select>
Xlist=Φ Ylist=Φ η=9 I=<PX,Py>,with PX={Φ},Py={Φ};
N={ (-1,-1), (-1,0), (-1,1), (0,-1), (0,0), (0,1), (1,-1)(1,0) (1,1)};
X={0,1,2,11,12,13,14,21,22,23,24,31,32,33,34,41,42,43,44};
Y={0,1,2,11,12,13,14,21,22,23,24,31,32,33,34,41,42,43,44};
m=26; n=22; B={Φ}; C={Cij/iε[1,26], jε[1,22]}
select ={ (-1,-1), (-1,0), (-1,1), (0,-1), (0,0), (0,1), (1,-1), (1,0), (1,1) };

Z:
Pij Y1 → Pi,j-1 X1 Pi,j+1 Y1 → Pij X1

Pij Y2 → Pi+1,j X2
Pij Y3 → Pi,j+1 X3
Pij Y4 → Pi-1,j X4
Pij Y5 → Pij X5

Pi-1,j Y2 → Pij X2
Pi,j-1 Y3 → Pij X3
Pi+1,j Y4 → Pij X4
Pij Y5 → Pij X5

The cell space, the value 1 was used to represent V, and the value 2 was used to represent S.

The number 0 represents an empty cell for which a mobile S can occupy. To give direction to the
V (although the model assumes fixed V) or S, a two digit number was used. For example, the
following represent:

11 “up” moving V
12 “right” moving V
13 “down” moving V
14 “left” moving V

21 “up” moving S
22 “right” moving S
23 “down” moving S
24 “left” moving S

As we can see, Cell-DEVS provides great support for defining these models, for having

independent cell states and random mobility of cells, provide an excellent environment to
simulate the process of synapsin-vesicles interactions of a nerve. As mentioned earlier, the
model constructed can be further extended to include the movement of both synapsin (S) and
vesicles (V) as well as defining different off and on rates. Aside from V-S reactions, the model
can also include Actins, which bind to synapsins. Actins can be represented as a string of cells
being fixed at their cell space position. A summarized version of the model’s definition in
CD++ is as follows:

[top]
components : chemCell

[chemCell]
type : cell dim : (26,22) delay : transport
defaultDelayTime : 100 border : wrapped
neighbors : (-1,-1) (-1,0) (-1,1) (0,-1) (0,0) (0,1)
neighbors : (1,-1) (1,0) (1,1)
localtransition : chemCell-rule

[chemCell-rule]
rule : {round(uniform(11,14))} 100 { (0,0) = 1 }
…
rule : {round(uniform(31,34))} 100 {((0,0)=21 or (0,0)=22 or (0,0)=23 or
(0,0)=24) and(((-1,0)-10=1 or (-1,0)-10=2 or…}
…
%moving up
rule : 91 100 {(0,0)=21 and (-1,0)=0 and t}
rule : {round(uniform(21,24))} 0 {(0,0)=0 and (1,0)=91 }
…
%release 0.1 of the S (the offrate is 0.1)
rule : {round(uniform(21,24))} 100 {((0,0)=33 or (0,0)=32 or
(0,0)=31 or (0,0)=34) and random < 0.10}
…
rule : { (0, 0) } 100 { t}

Figure 5. Synapsin-Vesicle Reaction model in CD++

 In the following code, we explain in details each part of the model definition.

initialrowvalue : 0 0010201202201012020100

initialrowvalue : 1 0001020120101020120100
initialrowvalue : 2 0000000000000000000000
initialrowvalue : 3 0010112010120220220100
initialrowvalue : 4 0002010001120220111200

...
initialrowvalue : 25 0001202020111202201000

...

rule : {round(uniform(11,14))} 100 { (0,0) = 1 }
rule : {round(uniform(21,24))} 100 { (0,0) = 2 }

In the above two rules, the cells are first initialized with 11-14 (for Vesicles) and 21-24 (for
Synapsin) to show the scenario at time = 0, where bindings have not yet been performed. Once
bindings occur, cells change their values; 11-14 get replaced with 31-34, and 21-24 get replaced
with 41-44. Also for Synapsins, four intermediate values 91-94 are used to represent a moving
cell that has not yet being settled down. Once it settles down its value changes back to 21-24
(depending on its direction of movement) and gets ready to bind to a vesicle in its neighborhood.

rule : {round(uniform(31,34))} 100 {((0,0)=21 or (0,0)=22 or (0,0)=23 or
(0,0)=24) and
(((-1,0)- 10 = 1 or (-1,0)- 10 = 2 or (-1,0)- 10 = 3 or (-1,0)- 10 =4) or
 ((1,0)- 10 = 1 or (1,0)- 10 = 2 or (1,0)- 10 = 3 or (1,0)- 10 = 4) or
 ((0,-1)- 10 = 1 or (0,-1)- 10 = 2 or (0,-1)- 10 = 3 or (0,-1)- 10 = 4) or
 ((0,1)- 10 = 1 or (0,1)- 10 = 2 or (0,1)- 10 = 3 or (0,1)- 10 = 4) or
 ((-1,1)- 10 = 1 or (-1,1)- 10 = 2 or (-1,1)- 10 = 3 or (-1,1)- 10 = 4) or
 ((1,-1)- 10 = 1 or (1,-1)- 10 = 2 or (1,-1)- 10 = 3 or (1,-1)- 10 = 4) or
 ((1,1)- 10 = 1 or (1,1)- 10 = 2 or (1,1)- 10 = 3 or (1,1)- 10 = 4) or
 ((-1,-1)- 10 = 1 or (-1,-1)- 10 = 2 or (-1,-1)- 10 = 3 or (-1,-1)- 10 = 4))
and random > 0.10}

The above rule describes the following scenario: if there exists a synapsin having the value
21, 22, 23, or 24 (a synapsing that can move up/right/down/left) and there is a vesicle in its
neighboring which could be an adjacent cell or a diagonal cell, then the synapsin (red cells) will
move toward this vesicle and a binding will occur soon, the value of the synapsin gets changed
to 31, 32, 33, or 34 (i.e. 21 changes to 31, 22 changes to 32, 23 changes to 33, and 24 changes to
34) to represent a synapsin that is bonded to a vesicle.

rule : {round(uniform(41,44))} 100 {((0,0)=11 or (0,0)=12 or (0,0)=13 or
(0,0)=14) and
(((-1,0)- 30 = 1 or (-1,0)- 30 = 2 or (-1,0)- 30 = 3 or (-1,0)- 30 = 4) or
((1,0)- 30 = 1 or (1,0)- 30 = 2 or (1,0)- 30 = 3 or (1,0)- 30 = 4) or
((0,-1)- 30 = 1 or (0,-1)- 30 = 2 or (0,-1)- 30 = 3 or (0,-1)- 30 = 4) or
((0,1)- 30 = 1 or (0,1)- 30 = 2 or (0,1)- 30 = 3 or (0,1)- 30 = 4) or
((-1,1)- 30 = 1 or (-1,1)- 30 = 2 or (-1,1)- 30 = 3 or (-1,1)- 30 = 4) or
((1,-1)- 30 = 1 or (1,-1)- 30 = 2 or (1,-1)- 30 = 3 or (1,-1)- 30 = 4) or
((1,1)- 30 = 1 or (1,1)- 30 = 2 or (1,1)- 30 = 3 or (1,1)- 30 = 4) or
((-1,-1)- 30 = 1 or (-1,-1)- 30 = 2 or (-1,-1)- 30 = 3 or (-1,-1)- 30 = 4))
and random > 0.10}

Similarly, the above rule describes the following: if there exists a vesicle having the value
11, 12, 13, or 14 (a vesicle that can move up/right/down/left) and there is a synapsin in its
neighboring which could be an adjacent cell or a diagonal cell, then since the synapsin will come
toward this vesicle and a binding will occur soon, the value of the vesicle gets changed to 41, 42,
43, or 44 (i.e. 11 changes to 41, 12 changes to 42, 13 changes to 43, and 14 changes to 44).

For the movement of synapsin the following four rules are implemented: (each movement is
performed in three steps)

%moving up
rule : 91 100 {(0,0)=21 and (-1,0)=0 and t}
rule : {round(uniform(21,24))} 0 {(0,0)=0 and (1,0)=91 }
rule : 00 0 {(0,0)=91}

step 1: checking to see if there is an empty cell so the synapsin can move into it, for example if
the synapsin’s direction is upward (value = 21), then at first we need to check if there is an
empty cell right above it. (91 is used as an intermediate value to occupy the empty cell)
step 2: once an empty cell is found, it gets occupied by the synapsin (i.e. the cell’s value changes
from 0 to a random number 21-24).
step 3: the previous position of the synapsin that just moved to an empty cell gets cleared by
setting the value of the cell to 0.

 Same procedure is used for right, left, and down movement.

%moving right
rule : 92 100 {(0,0)=22 and (0,1)=00 and t}
rule : {round(uniform(21,24))} 0 {(0,0)=0 and (0,-1)=92}
rule : 00 0 {(0,0)=92}

%moving down
rule : 93 100 {(0,0)=23 and (1,0)=00 and t}
rule : {round(uniform(21,24))} 0 {(0,0)=0 and (-1,0)=93 }
rule : 00 0 {(0,0)=93}

%moving left
rule : 94 100 {(0,0)=24 and (0,-1)=00 and t}
rule : {round(uniform(21,24))} 0 {(0,0)=0 and (0,1)=94 }
rule : 00 0 {(0,0)=94}

%release 0.1 of the S (the offrate is 0.1)
rule : {round(uniform(21,24))} 100 {((0,0)=33 or (0,0)=32 or (0,0)=31 or
(0,0)=34) and random < 0.10}

The above rule is used to break the S-V bindings using an offrate = 0.10. According to this
rule, 10% of the bindings get broken and as a result synapsins get released and will be given
another direction and they will move around until finding a vesicle and binding to it.

Figure 6 shows the grid at the initial case where S and V have not yet interacted to perform a
bound. Then, Figure 7 will show how bounds are formed and the corresponding cells change
their values to represent the binding.

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 +--+
 0| 13 24 14 24 23 23 11 13 21 22 12 |
 1| 12 23 13 22 14 12 22 12 23 13 |
 2| |
 3| 12 12 11 23 14 13 21 22 23 22 23 11 |
 4| 23 11 14 11 22 22 23 13 14 14 23 |
 5| |
 6| 12 22 12 23 23 13 22 23 13 13 11 22 |
 7| 13 21 24 23 12 12 22 14 24 13 22 |
 8| 12 22 13 22 23 23 11 13 14 22 13 24 |
 9| |
 10| 12 13 12 13 23 23 11 23 24 11 |
 11| 12 22 24 22 12 13 13 22 24 22 13 |
 12| 13 22 13 24 12 14 24 24 12 22 12 |
 13| 24 13 24 12 13 22 12 24 12 21 14 |
 14| |
 15| 13 22 21 22 12 14 12 13 24 23 13 |
 16| 12 23 11 23 21 22 13 21 14 21 12 13 |
 17| 12 13 12 12 22 21 12 21 22 12 |
 18| |
 19| 14 22 13 22 14 11 23 13 24 13 |
 20| |
 21| 14 23 23 24 11 23 22 23 13 12 13 |
 22| 21 12 24 |
 23| 22 13 |
 24| 12 24 13 22 21 21 12 14 12 22 12 23 |
 25| 12 21 22 23 12 14 12 21 22 23 14 |
 +--+

Figure 6. V and S before binding at Time: 00:00:00:100 (bold boxes represent examples of binding
structures)

 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
 +--+
 0| 13 32 41 22 32 34 31 44 42 34 31 12 |
 1| 12 32 44 21 42 12 23 42 32 13 |
 2| |
 3| 41 42 41 32 14 42 32 22 33 33 44 |
 4| 32 43 14 41 34 23 13 43 14 32 |
 5| 33 |
 6| 42 33 44 32 31 43 32 21 44 42 42 34 |
 7| 42 31 34 32 41 42 23 42 32 44 31 |
 8| 12 31 41 24 34 33 41 13 43 34 42 31 |
 9| |
 10| 42 44 42 41 23 31 43 32 33 11 |
 11| 41 32 32 33 44 44 13 33 33 33 43 |
 12| 42 31 41 32 42 43 33 32 12 22 12 |
 13| 22 41 32 42 13 34 42 32 44 31 14 |
 14| |
 15| 41 34 32 33 44 42 42 42 34 32 13 |
 16| 44 31 42 31 31 31 42 31 44 33 41 13 |
 17| 12 43 43 42 32 31 44 33 12 |
 18| 24 |
 19| 14 22 13 32 14 42 31 13 33 13 |
 20| |
 21| 43 33 22 44 31 22 13 44 13 |
 22| 23 32 42 32 33 |
 23| 33 41 |
 24| 12 33 43 31 33 33 42 14 42 23 44 34 |
 25| 42 32 34 41 42 42 31 34 21 14 |
 +--+

Figure 7. V and S after binding at Time: 00:00:00:300

 As illustrated on the above figures, the bold boxes show bindings between synapsin (31-34)
and vesicle (41-44). The first illustration (Figure 6) represents the initial scenario where
synapsins (21-24) and vesicles (11-14) are free and have not yet performed bindings. Once
synapsins walk toward vesicles, the values of the corresponding cells change to 31-34 (bonded
synapsins) and 41-44 (bonded vesicles). It is shown that vesicles can be surrounded by more than
one synapsin, but each synapsin can bind to only one vesicle at any time.
From the above figure we can see the following possible binding scenarios:

→ corresponds to: V– S

 → corresponds to: S – V
 |

 S
Several initial parameters were tested in order to see the running process of cell nerve with

different offrate.

V. PARALLEL AND DISTRIBUTED SIMULATION
As was mentioned earlier, P-DEVS and Parallel Cell-DEVS extend the standard formalisms

of their type to allow a higher degree of parallelism in parallel and distributed environments. In
our research, we have modified CD++ sequential simulator to enable parallel and distributed
simulations by implementing optimistic synchronization protocol that was first proposed by
Jefferson as Time Warp mechanism [Jef85]. We have built an optimistic parallel CD++
simulator (optimistic PCD++) that executes simulation via several Time Warp processes
[Mar99] by exchanging time-stamped event messages using MPI [Gro96]. The Time Warp
protocol used by PCD++ simulator consists of two parts: the local control mechanism and the
global control mechanism. The local control mechanism which is provided in each Time Warp
process is in charge of rollback operations which include: sending anti-messages, restoring the
state of the LP, readjusting Local Virtual Time (LVT), etc. On the other hand, the global control
mechanism takes care of global issues such as memory management, I/O operations, and
termination detection.

Our optimistic PCD++ simulator employs a layered architecture, where each layer depends
only on the layers below it. Figure 8 represents these layers.

Figure 8. Layered architecture of PCD++ [Gli04]

On the bottom of the architecture the operating system resides. We have chosen Linux
Operating System as the underlying platform on which our simulator runs. Above the Operating
System lies the Message Passing Interface (MPI). MPI is a standard specification of message-
passing library for high-performance communications on both massively parallel machines and
on workstations clusters. The Operating System with the use of MPI provides the
communication infrastructure for the PCD++ simulator. We have used MPICH [Gro96] portable
implementation of MPI which provides a vehicle for MPI implementation research and for
developing parallel and distributed applications. The WARPED [Rad98] simulation kernel is our
next layer which serves as a configuration middleware that implements the Time Warp
mechanism and a verity of optimization algorithms. On top of the WARPED kernel we have our
PCD++ simulator implementing the Parallel DEVS and Cell-DEVS formalisms which provides
the frame work for building and executing DEVS and Cell-DEVS models in distributed
environments using the Time Warp protocol.

PCD++ implements a flattened structure for the simulation framework. Two types of CD++
processors exist on PCD++: Flat Coordinator (FC) and Node Coordinator (NC). This approach
reduces the communication overhead by flattening the structure of the simulation framework.
The class hierarchies in the modeling and the simulation frameworks are shown in Figure 9.

Figure 9. Processor hierarchy

As seen on the diagram, there are four types of PCD++ processors during the simulation:

Simulator, FC, NC, and RC. When DEVS and Cell-DEVS models are executed over multiple
machines, a distributed processor structure is constructed in PCD++ to carry out the simulation.
Lets consider the following example to see how partitioning takes place when simulating a
coupled DEVS or Cell-DEVS model on two machines using PCD++ simulator. Figure 10
represents this scenario. In this example there are four atomic models (A1, A2, A3, and A4)
where A1 and A2 are grouped by the coupled model C1, and C1, and the other two atomic
models A3, and A4 are then grouped by the TOP coupled model. The whole model is referred to
as TOP model. Since we will execute the simulation on two machines, there will be two
partitions encapsulating the atomic models two by two. Partition 0 will take care of A1 and A2,
and partition 1 will be responsible for A3 and A4. By partition we mean the machine that will
run the simulation.

MPI

WARPED

Parallel CD++

MODEL

Figure 10. Example model and partition definition

Moreover, a graphical representation of the distributed processors structure of this example is

illustrated by Figure 11 .

Figure 11. Distributed processor structure for the example

For this example, two logical processes are created, one per each machine: LP0 and LP1. LPs
group together the PCD++ processors on the machine they belong to. Two types of messages
exist: remote messages and local messages. Local messages are exchanged among those
Simulators which reside on the same LP, while remote messages are exchanged among
simulators residing on LPs other than the one they are originating from. Local messages are
handled by the FC, and the remote messages are handled by the NC and then sent to the
appropriate Simulator through the destination FC. The root coordinator is created only on
machine 0. It starts the simulation and handles I/O operations. The NC which exists on each
machine is the local central controller on each LP and the end point of inter-LP communications.
The FC residing between the NC and the Simulators is responsible for synchronizing the
execution of its child Simulators. Finally, the Simulator is responsible for executing DEVS
abstract functions defined in the atomic models. When a Simulator sends a message to another
Simulator sitting on a remote machine, the message is first directed to the FC, then to the local
NC through direct communication. Once the message gets to the NC, it will be forwarded to the
destination NC through MPI communication. On the receiving end, the NC will then forward the
message to the destination Simulator through the child FC.
 In PCD++, two types of communications exit among LPs: synchronous intra-LP
communications which are carried out by all types of PCD++ processors (i.e. Simulator, NC, FC,
RC), and asynchronous inter-LP communications carried out by NCs. Since inter-LP
communications are asynchronous, the NCs require a special structure named as NC Message
Bag to handle the message passing between LPs who have different local virtual times. The
following properties hold for NC Message Bag:

1. Messages inside a Message Bag can have different timestamps.
2. The time of a Message Bag is equal to the minimum timestamp among the contained

messages. If the Message Bag is empty, then its time is set to infinity.
3. Messages inside a Message Bag are processed based on their timestamp in an increasing

order. That is the message whose timestamp is equal to the Message Bag’s time is
processed first. Once the message is processed, it is then removed from the bag, and the
bag’s time is advanced to the next minimum value among the timestamps of the

remaining messages. Once all the messages are processed and removed from the bag, the
Message Bag’s time is restored back to infinity implying that the bag is empty.

In contrast, synchronous intra-LP communications are handled by the Simulators and the FC
since they are local to the LP and do not pass the boundary of the LP. Similar to the NC Message
Bag, for intra-LP messages the FC holds a message bag. In this case, when two local Simulators
(i.e. sitting on the same LP) need to communicate to each other, they send the message to the
local FC, and then the message will be directed to the destination local Simulator by the FC.
There is no direct communications between Simulators, even the ones sitting on the same LP.
Local Simulators can only communicate to each other through their FC. This is the purpose of
having FC message bag. PCD++ messages are in form of data objects which are dynamically
allocated and deleted by the PCD++ processors.

PCD++ processors exchange two categories of messages: content messages and control
messages. The first category includes the external message (x) and the output message (y), and
the second category includes the initialization message (I), the collect message (@), the internal
message (*), and the done message (D). To describe these messages, external and output
messages are used to exchange simulation data between the models, initialization messages start
the simulation, collect and internal messages trigger the output and the state transition functions
respectively in the atomic DEVS models, done messages handle synchronization by carrying the
model timing information. The simulation is executed in a message-driven manner.

Each type of PCD++ processor, define its own receive functionality for each type of messages.
Let’s what happens at each PCD++ processor considering the scenario of reception of different
types of messages:
Simulator: upon receiving (I, 0) from the parent FC, two variables are used to record the current
simulation time (tL) and the value of sigma (ta). Upon receiving the initialization message, (I, 0),
the Simulator resets tL to the timestamp of the message, therefore the Simulator’s virtual time
now is equal to zero. Then the simulator initializes the variables defined in its associated atomic
model, and after that, it informs its parent FC of the value of ta by sending a done message
stamped with time 0. When a (@, t) message is received, the Simulator invokes the output
function (λ) of the atomic model and as a result an output message (y, t) is sent to the FC. After
this, the Simulator will send (D, t) to the FC with ta = 0 to indicate that it is imminent. Following
the collect message, a (*, t) will arrive to trigger internal/external/confluent function of the
atomic model depending on the timing of the message and the status of the Simulator’s message
bag. The last message that may arrive at the Simulator is (x, t) which is simply inserted into the
Simulator’s message bag.
Flat Coordinator: when (I, 0) is received, the FC records the total number of its children in a
variable named as doneCount then forwards the (I, 0) message to each child. After this, the FC
waits for all its children to respond to this initialization by sending back a (D, 0). The FC will
only pass the control over to the NC if all its children have finished their previous computation
and have sent done messages as notification messages. Upon receiving a (@, t) message, the FC
forwards it to all imminent Simulators and will keep a record of this for later use (to know which
children need to do state transitions when (*, t) is received). Moreover, when (y, t) is received,
the FC searches the model coupling information to find out the correct destination. The
destination is either an input port on an atomic model, or an output port on the topmost coupled
model. In case of receiving (x, t) message, the FC will simply insert the message into its message
bag. Upon receiving (*, t) message, the external messages inside the FC’s message bag are
flushed to the local receiving Simulators. This will trigger the imminent Simulators to perform a
state transition. Finally, when a (D, t) message is received from a child Simulator, the FC
updates the child’s tN to the sum of the current simulation time and the sigma value carried by
the received (D, t) message.
Node Coordinator: upon receiving (I, 0), the NC simply forwards it to the child FC. In case of
receiving (x, t), NC will insert this message into the NC Message Bag. These external messages
contain values sent from remote Simulators to local ones. When (y, t) is received the NC simply
forward it the Root (it has to be sent to the environment). Reception of a (D, t) message by the
NC from a child FC indicates that this is a response to a control message that was previously
sent out by the NC.

Root Coordinator: this processor only handles environment-oriented output messages during
the simulation. Output to the environment is done through a test file called as output file or OUT
file.

Aside from the functionalities of each of the PCD++ processors, we have modified the
WARPED [Mar99] kernel in order to run simulations under different protocols. These protocols
are modifications of the optimistic one that WARPED implements. The idea is to reduce the
number of rollbacks by suspending the LP that has large number of rollbacks and therefore
stopping it from flooding the net with anti-messages. However, the LP will still be able to
receive input events and they will be inserted into the corresponding message bags. After a
predefined duration, the suspend LP is released and will go on simulating. These two protocols
[Szu00], namely Local Rollback Frequency Model (LRFM) and Global Rollback Frequency
Model (GRFM) are based on the “Near Perfect State Information - NPSI” protocol [Sri98]. The
NPSI protocol implements the Elastic Time mechanism. Briefly, Elastic Time is composed of
two parts:

1. Identifying the NPSI of the simulation.
2. Translating the NPSI in optimism on the simulation objects.

Each part can be implemented in many ways. The main concept is to associate each LP with a
potential error (PE) to control the optimism of LPi. During the simulation run, the value of each
PE is kept updated by evaluating a function called M1 which uses state information that is
received from the feedback system. Then, the function M2 translates dynamically every update
of PEi in delays in the execution events.

VI. LOCAL ROLLBACK FREQUENCY MODEL
The Local Rollback Frequency Model (LRFM) protocol is only based on local information of the
logical processes. That is, the simulation object within a LP will be suspended or allowed to
continue simulating only based on the number of rollbacks it had. First M1 and M2 functions
must be defined:

- Function M1: The potential error of a simulation object is the number of rollbacks that the
object had from a time T1 until the actual time T2, having that T2 - T1 <= T, where T is the
interval after which the local number of rollbacks of the simulation object gets restarted back to
zero.

- Function M2: If the number of rollbacks for a simulation object at the interval T is greater than
a specified value, then the object is suspended, adopting a conservative behavior. By suspending
the simulation object, the LP where the object resides on will still be able to receive incoming
events, but the events are not processed until the simulation object is again given the chance to
resumes. However, if the number of rollbacks of the simulation object is less than the predefined
value, then the object simulates aggressively, adopting its usual optimistic behavior (Time
Warp).

To implement this protocol each LP has to be informed about two values: max_rollback, and
period. Where max_rollback is the maximum number of allowed rollbacks before suspension of
the simulation object, and period is the duration for which the simulation object will stay
suspended. The algorithm is presented in Figure 12.

1. In each LP, at the beginning predefine:
 max_rollbacks and period
2. In each simulation object, at the simulation start:
 previous_time = 0
3. In each object, when the LP is scheduled to run:
 actual_time = Warped.TotalSimulationlTime ()
 if (actual_time - previous_time >= period)
 simulateNextEvent()
 previous_time = actual_time

 rollbacks = 0
 else
 if (rollbacks < max_rollbacks)
 simulateNextEvent()
 /* else, SUSPEND the simulation object */

Figure 12. LRFM Algorithm

VII. GLOBAL ROLLBACK FREQUENCY MODEL
In Global Rollback Frequency Model (GRFM) protocol each simulation object uses global

information in such a way that among all the simulation objects residing on all LPs, the one with
greatest number of rollbacks must be suspended for the duration of time defined at the beginning
of the simulation. Therefore, at each simulation cycle all the LPs must broadcast the information
regarding the rollback counts of all of their simulation objects. As in LRFM, M1 and M2
functions must first be defined:
Function M1: The potential error of a simulation object is the number of rollbacks that the
object had minus the maximum number of rollback of the other simulation objects of the
simulation, from a time T1 until the actual time T2, having that T2 - T1 <= T, where T is the
interval after which the local number of rollbacks of the simulation object gets restarted back to
zero.
Function M2: If the number of rollbacks for a simulation object at the interval T is greater than
other number of rollbacks of the other simulation objects, then the object is suspended, adopting
a conservative behavior. By suspending the simulation object, the LP where the object resides on
will still be able to receive incoming events, but the events are not processed until the simulation
object is again given the chance to resumes. However, if the number of rollbacks of the
simulation object is less than the predefined value, then the object simulates aggressively,
adopting its usual optimistic behavior (Time Warp).

This algorithm is implemented as follows:

1. In each LP, at the beginning predefine: period
2. In each simulation object, at the beginning predefine:
 previous_time = 0
 max_rollbacks = 0
3. In each simulation object, when the LP is scheduled to run:
 actual_time = Warped.TotalSimulationlTime ()
if (actual_time - previous_time >= period)
 simulateNextEvent()
 previous_time = actual_time
 rollbacks = 0
else
 if (rollbacks < max_rollbacks)
 simulateNextEvent()
/* else, SUSPEND the simulation object */
4. For i from 1 until the number of LPs
if (i is NOT this PL id)
send to LP i the number of rollbacks of the objects of the LP id
Subroutine that receives the number of rollbacks from other LP:
For j from 1 until the numbers received
If (rollbacks[j] > max_rollbacks)
max_rollbacks = rollbacks[j]

Figure 13. GRFM Algorithm

With LRFM and GRFM different simulation results can be collected since the RFM period (and
in case of LRFM the max_rollbacks) can be modified very easily at the beginning of the
simulation. This is done by changing these values in the configuration files right before the

simulation starts and therefore, there is no need to rebuild the whole simulator in order for these
modifications to have effect.

VIII. SIMULATION RESULTS
After modifying WARPED kernel of PCD++ simulator to include LRFM and GRFM, the Ship
Evacuation model and Synapsin-Vesicle Reaction model were executed and results were
collected. To study the performance of our optimistic PCD++ simulator, the experiments were
first carried out on standalone CD++ on a single machine, and then on a cluster. The cluster
consisted of 32 compute nodes (dual 3.2 GHz Intel Xeon processors, 1GB PC2100 266MHZ
DDR RAM) running Linux WS 2.4.2.1 interconnected through Gigabit Ethernet and
communicating over MPICH 1.2.6.

The metric used to measure the performance of PCD++ simulator is the Execution Time which
is the total execution time of the simulation collected from the execution environment. During
the experiment, results of execution of both protocols; the LRFM and GRFM were conducted
and the Overall Speedup which is defined as follows was calculated.

Overall Speedup = T(1) / T(N)
Table 2 represents the execution of both models on single machine using the standalone

sequential CD++ simulator.
Model Total Execution Time (sec)

Ship Evacuation 6.4327
Synapsin-Vesicle Reaction 3.7621
Table 2. Results of standalone CD++ simulator

Then, simulations were run for both models on 1 to 8 nodes and for each node five trials

were collected. The values shown on the graph (Figure 14, Figure 15) are the average of these
five trials for each node which are within a confidence interval of 95%.

Ship Evacuation Execution Time

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8

Number of nodes

E
se

cu
tio

n
Ti

m
e

(s
ec

)

LRFM
GRFM

Figure 14. Execution time of Ship Evacuation model with LRFM and GRFM protocols

V-S Reaction Execution Time

0

1

2

3

4

5

1 2 3 4 5 6 7 8

Number of node

E
xe

cu
tio

n
Ti

m
e

(s
ec

)

LRFM
GRFM

Figure 15. Execution time of Synapsin-Vesicle Reaction model with LRFM and GRFM protocols

The following figures show the speedups for both models:

Ship Evacuation Speedups

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

1 2 3 4 5 6 7 8

Number of node
Sp

ee
du

p

LRFM
GRFM

Figure 16. Speedups of Ship Evacuation model with LRFM and GRFM protocols

V-S Reaction Speedups

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

1 2 3 4 5 6 7 8

Number of node

S
pe

ed
up

s

LRFM
GRFM

Figure 17. Speedups of Synapsin-Vesicle Reaction model with LRFM and GRFM protocols

IX. CONCLUSION
We have introduced two new simulation techniques for P-DEVS and Cell-DEVS optimistic
simulator by modifying Time Warp, a well-known optimistic synchronization protocol. Our
efforts address the need for efficient, fast execution of models using parallel and distributed
simulation. We propose an optimistic-based mechanism to reduce the number of rollbacks and
anti-messages. Our two algorithms, namely Local Rollback Frequency Model (LRFM) and
Global Rollback Frequency Model (GRFM) are implemented as modifications of the optimist
one that Time Warp implements. The use of LRFM and GRFM enable achieving higher
speedups and lower execution times. Under our new protocols, during the simulation objects
with a large number of rollbacks are suspended for a predefined period (although the objects will
continue receiving input events). The idea is to stop the objects with large number of rollbacks
from flooding the simulation with anti-messages and only allowing the rest of objects to
advance. These new protocols are based on the Near Perfect State Information protocol. The
execution results (based on two Cell-DEVS models) showed better performance than stand-alone
execution. Using more complex and larger models will show considerable speedups.

X. REFERENCES

[Ala07] Al-aubidy, B.; Dias, A.; Bain. R.; Jafer, S.; Dumontier, M.; Wainer, G.; Cheetham, J.
”Advanced DEVS models with applications to biomedicine”. Artificial Intelligence, Simulation
and Planning. Buenos Aires, Argentina. AIS 2007.

[Ben90] Benfenati, F., Valtorta, F., Greengard, P.; “Computer Modelling of Synapsin 1 Binding
to Synaptic Vesicles and F-actin”. Implications for Regulation of Neurotransmitter Release. 1990.

[Bry77] Bryant, R.E. Simulation of Packet Communication Architecture Computer Systems.
Massachusetts Institute of Technology, Cambridge, MA. USA. 1977.

[Fuj00] Fujimoto, R. M. “Parallel and Distributed Simulation Systems”. A Wiley-Interscience
publication. ISBN 0-471-18383-0. 2000.

[Gli04] Glinsky, E. “New Techniques for Parallel Simulation of DEVS and Cell-DEVS Models
in CD++”. M. A. Sc. Thesis. Carleton University. Canada. 2004.

[Gro96] Gropp, W.; Lusk, E.; Doss, N.; Skjellum, A. “A high-performance, portable
implementation of the MPI message-passing interface standard”. Parallel Computing. Vol. 22,
pp. 789-828. 1996.

[Jef85] Jefferson, D. “Virtual Time”. ACM Transactions on Programming Languages and
Systems. 7(3):405-425. 1985.

[Klu01] Klüpfel, W.; Meyer-König, T.; Wahle, J.; Schreckenberg, M. “Microscopic Simulation
of Evacuation Processes on Passenger Ships”, Theoretical and Practical Issues in Cellular
Automata, pp. 63-71, Springer-verlag 2001.

[Mar99] Martin, D. E.; McBrayer, T. J.; Radhakrishnan, R.; Wilsey, P. A. “WARPED – A Time
Warp Parallel Discrete Event Simulator (Documentation for version 1.0)”.

[Rad98] Radhakrishnan, R.; Martin, D. E.; Chetlur, M.; Rao, D. M.; Wilsey, P.A. “An Object-
Oriented Time Warp Simulation Kernel”. Proceedings of the International Symposium on
Computing in Object-Oriented Parallel Environments (ISCOPE’98). Vol. LNCS 1505, pp. 13-
23. Springer-Verlag. 1998.

[Sri98] Srinivasan, S.; Reynolds, J., “Elastic Time”, ACM Transactions on Modeling and
Computer Simulation, Vol. 8, No. 2. 103-139. April 1998.

[Szu00] Szulsztein, E.; Wainer, G. “New Simulation Techniques in WARPED Kernel” (in
Spanish). Proceedings of JAIIO, Buenos Aires, Argentina, 2000.

[Wai01] Wainer, G.; Giambiasi, N. “Timed Cell-DEVS: modeling and simulation of cell spaces
“. In “Discrete Event Modeling & Simulation: Enabling Future Technologies”, Springer-Verlag.
2001.

[Wai02] Wainer, G. “CD++: a toolkit to develop DEVS models”. Software – Practice and
Experience. Vol. 32, pp. 1261-1306. 2002.

[Zei00] Zeigler, B.; Kim, T.; Praehofer, H. “Theory of Modeling and Simulation: Integrating
Discrete Event and Continuous Complex Dynamic Systems”. Academic Press. 2000.

